
A Tractable Line-of-Sight Product Channel Model:
Application to Wireless Powered Communications

F. J. Lopez-Martinez∗, L. Moreno-Pozas∗, U. Fernandez-Plazaola∗,
J. F. Paris∗, E. Martos-Naya∗, J. M. Romero-Jerez+

∗Dpto. de Ingeniería de Comunicaciones, ETSI Telecomunicacion
+Dpto. de Tecnología Electrónica, ETSI Telecomunicacion

Universidad de Málaga, Málaga, E-29071, Spain
email: {fjlopezm,lmp,unai,paris,eduardo}@ic.uma.es, romero@dte.uma.es.

Abstract—We here present a general and tractable fading
model for line-of-sight (LOS) scenarios, which is based on the
product of two independent and non-identically distributed κ-
µ shadowed random variables. Simple closed-form expressions
for the probability density function and cumulative distribution
function are derived, which are as tractable as the corresponding
expressions derived from a product of Nakagami-m random
variables. This newly proposed model simplifies the challenging
characterization of LOS product channels, as well as combi-
nations of LOS channels with non-LOS ones. Results are used
to analyze performance measures of interest in the context of
wireless powered communications.

I. INTRODUCTION

In wireless communications, the so-called product channel
Z = XY is related to the product of two random processes
X and Y associated to the stochastic nature of two wireless
communication channels. The product channel naturally arises
in the context of communication systems assisted by relays
[1], when modeling propagation effects such as keyholes [2],
diffraction [3] and composite fading [4], or turbulence-induced
scintillation in free-space optical communications [5]. Fur-
ther scenarios on which the product channel characterization
is essential also include wireless powered communications
(WPC) [6–8]. Thus, the statistical characterization of the
product channel is of paramount relevance for understanding
the performance limits of wireless communication systems
operating in these scenarios, either in line-of-sight (LOS) or
non-LOS (NLOS) propagation conditions.

The characterization of LOS product (or LOSxLOS) chan-
nels is very challenging and cannot be given in closed-form,
but in terms of double infinite sums of special functions
[9, 10]. Therefore, for the sake of tractability, some authors
have approximated both LOS links as NLOS ones, which
have closed-form characterization [1, 3]. Indeed, using the
Nakagami-m distribution for approximating the Rician distri-
bution is a classical approach which can simplify the character-
ization of some scenarios [11, 12]. In other scenarios, however,
despite being simple and insightful, the results derived therein
can give inaccurate approximations when the propagation
conditions are clearly LOS. Moreover, the approximation of
the Rician distribution through a Nakagami-m distribution has
severe limitations related to the different diversity order of
such distributions [13].

With all these considerations, the literature is lacking from
LOS product channel models which are analytically tractable.
Since the complexity of previous results for LOS product
channel models are mainly due to the challenge posed by
considering a product of two Rician random variables (RVs),
we here propose to characterize product channels by means of
a more general distribution, which in turn will help simplifying
the problem. We will introduce a product channel model based
on the κ-µ shadowed fading distribution [14, 15], built as the
product of two independent and non-identically distributed
(INID) κ-µ shadowed RVs with integer fading parameters,
which includes the Rician product model as a special case.
For the sake of shorthand notation, we will refer to this new
fading distribution as the P-distribution (where P stands for
product). Although we here focus on simplifying the analysis
of Rician product channels, the results here presented for
the κ-µ shadowed product channel can unify the analysis
of a vast set of product models as special cases, including
LOSxLOS product channel based on the κ-µ distribution,
as well as LOSxNLOS and NLOSxNLOS product channels
based on the Nakagami-m and Rayleigh distributions [16].
The usefulness of this new distribution is exemplified in the
context of wireless powered communications. Specifically, we
investigate the average throughput in a WPC setup on which
all links are inherently LOS.

II. STATISTICAL CHARACTERIZATION

A. Preliminary results

Throughout this paper, we will consider the distributions
associated to the power envelope in κ-µ shadowed fading
channels (or equivalently, the instantaneous receive SNR γ).

Lemma 1 (The κ-µ shadowed distribution with integer
fading parameters [17]): Let γ be a κ-µ shadowed random
variable with mean γ̄ and shape parameters κ, µ and m [14].
If the parameters µ and m are positive integers, then for any
arbitrary non-negative real κ the probability density function
(PDF) and cumulative distribution function (CDF) of γ are
given by [17, eq. (4-10)]
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where M and the set of parameters {Cj ,mj ,Ωj}j=1,...,M are
expressed in terms of γ̄, κ, µ and m according to Table I.
In (1) fK(·) represents the PDF of a squared Nakagami-m
distribution, (i.e. a Gamma distribution).

According to Lemma 1, the κ-µ shadowed distribution with
integer fading parameters m and µ can be expressed as a finite
mixture of squared Nakagami-m (or Gamma) distribution. To
theoretically obtain the Rician distribution as special case, we
need to set µ = 1 and tend m → ∞. However, in practice,
the κ-µ shadowed distribution converges rapidly to the Rician
distribution, i.e. for m ≈ 15− 20 [17].

Corollary 1 (Product of Two Squared Nakagami-m RVs):
Let Z = WŴ be the product of two INID squared Nakagami-
m random variables W and Ŵ with means Ω and Ω̂, where
the corresponding shape parameters m and m̂ are arbitrary
positive integer numbers. Then, the corresponding PDF and
CDF are given by
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where Kν is the modified Bessel function of the second kind,
and Γ(·) is the Gamma function.

Proof: The PDF follows from the corresponding expres-
sion given in [1] after performing a simple random variable
transformation of the type Y = X2. The CDF follows from
[7, eq. 8] by specializing the parameter a = 1.

The distribution described in Corollary 1 is essentially a
Gamma-Gamma (ΓΓ) distribution, up to a trivial re-scaling
by Ω. For the sake of notation simplicity, in this work we will
refer to this distribution as a ΓΓ distribution.

B. Main results

By means of the previous results and considerations, we will
now characterize the distribution of the product of two INID
κ-µ shadowed fading variables with integer fading parameters.

Proposition 1 (The P-distribution as a finite mixture of ΓΓ
distributions): Let Z be the product of two INID squared κ-µ
shadowed random variables X and X̂ with means γ̄ and γ̃.
The corresponding shape parameters κ and κ̂ are arbitrary non-
negative real numbers and the remainder shape parameters µ
and m for X , and µ̂ and m̂ for X̂ are positive integers. Under

these conditions, Z = XX̂ is distributed as a ΓΓ finite mixture
with the following PDF
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where the parameters M and {Cj ,mj ,Ωj}j=1,...,M are ex-
pressed in terms of γ̄, κ, µ and m according to Table 1;
similarly the parameters M̂ and {Ĉh, m̂h, Ω̂h}h=1,...,M̂ are
also expressed in terms of γ̃, κ̂, µ̂ and m̂.

Proof: The MGF of Z can be computed as
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(6)
Now, according to Corollary 1 the MGF of X̂ in (6) can be
expressed in terms of the squared Nakagami-m MGF MK as
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Using (1) and (7) in (6) and expanding the integrand yields
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whereMΓΓ

(
s; {Ωj ,mj} ; {Ω̂h, m̂h}

)
is the MGF of the ΓΓ.

Thus, applying the inverse Laplace Transform in (8) and
considering (3) completes the proof.

Proposition 1 states that the P-distribution can be expressed
in closed-form as a finite sum of well-known special functions.
Since the P-distribution is more general and simpler than
the Rician product distribution (which is but a special case
for µ = µ̂ = 1 and sufficiently large m and m̂), we advocate
for its use as the reference product channel model in a
communication-theoretic context. This will be later supported
by both theoretical and practical evidences in different scenar-
ios of interest.

Proposition 2 (CDF of the P distribution as a finite
mixture): Let Z be the product of two INID squared κ-µ
shadowed random variables X and X̂ with means γ̄ and γ̃.
The corresponding shape parameters κ and κ̂ are arbitrary non-
negative real numbers and the remainder shape parameters µ
and m for X , and µ̂ and m̂ for X̂ are positive integers. Under
these conditions Z = XX̂ has the following CDF



TABLE I: Parameter values for the κ-µ shadowed distribution with integer µ and m,
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where the parameters M and {Cj ,mj ,Ωj}j=1,...,M , M̂ and
{Ĉh, m̂h, Ω̂h}h=1,...,M̂ are those indicated in Proposition 1.

Proof: The CDF can be derived from the PDF such as
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where FΓΓ(·) is given by equation (4).
Thus, the CDF of the P-distribution is also given in a

simple closed-form. This expression has important relevance
in practice, since the CDF of the product of INID Rician
RVs has a very complicated form, which involves a double
infinite sum of Meijer G-functions [10, eq. (23)]. Here, the
P-distribution function, which includes the Rician product
distribution function as a special case, is only given in terms
of finite sums of modified Bessel functions of the second kind.

III. WIRELESS POWERED COMMUNICATIONS

A. System Model

Let us consider the following scenario [6, 7], on which a
source S communicates with a destination D with the help of
dedicated power beacons (PBs) that wirelessly transfer energy
to S. Both S and D are equipped with a single antenna, while
PBs are equipped with N antennas. The system operation
follows a harvest-then-transmit-like policy for every time

transmission interval T , as follows: during the first τT seconds
(with 0 < τ < 1), the source S harvests energy from the PBs.
During the energy harvesting phase, the received signal at S
can be expressed as

yS =

√
P

dα1
hxS + nS (12)

where P is the transmit power at the PB, d1 denotes the
distance between PB and S, α is the path loss exponent,
h and xS , are N elements vectors denoting the channel
response and the transmitted symbols, respectively, and nS
is the additive white Gaussian noise (AWGN) with variance
N0. The elements of h = [hi] (i = 1 . . . N ) are assumed to
be independent and identically distributed (IID) with unitary
variance. Assuming xS is formed with optimal beamforming
and nS can be neglected during the harvesting phase, the total
energy received at the end of the first phase is [6, eq. (5)]

En =
η ‖h‖2 PτT

dα1
(13)

where 0 < η < 1 is the energy conversion efficiency.
In the second phase, S transmits information to D using the

energy harvested in the first phase during (1 − τ)T seconds.
Hence, the received signal yD at D is given by

yD =

√
En

(1− τ)Tdα2
gs0 + nd (14)

where d2 denotes the distance between S and D, g is the
channel response following an arbitrary fading distribution
with unit variance, s0 is the information symbol with unit
energy, and nd is AWGN with variance N0. Therefore, the
instantaneous end-to-end SNR can be computed as

γ =
τη ‖h‖2 |g|2 P

(1− τ) dα1 d
α
2N0

. (15)

B. Performance analysis

Direct inspection of (15) reveals that the distribution of γ
is that of the product of ‖h‖2 and |g|2, which is ultimately
related to the distribution of the product of the underlying



fading channels between PBs and S, and between S and D.
As argued in [6], the link between PBs and S is inherently
LOS because of the relatively short distance between both
agents. However, the consideration of the Rician distribution
to model the small-scale fading in the PBs-S link is associated
to a larger mathematical complexity. For this reason, the Rician
distribution was approximated by the Nakagami-m distribution
in [6], with m = (1 + K)2/(1 + 2K). In turn, the S-D
link will be NLOS or LOS depending on the specific set-up:
both situations were addressed in [6] and [7] by resorting to
Rayleigh and Nakagami-m fading, respectively.

In the most general situation, both the PBs-S and the S-D
links can be LOS, and therefore the product channel associated
to LOS scenarios is the natural choice for characterizing the
behavior of the end-to-end SNR. We here propose the use of
the P-distribution introduced in Section II for this application,
as a workaround to characterize the distribution of γ when
the Rician distribution is considered. Because ‖h‖2 can be
expressed as the sum of N squared Rician random variables
(i.e. a κ-µ distribution with κ = K and µ = N ), and assuming
|g|2 to be Rician distributed, the distribution of γ is that of
the product of κ-µ and Rician random variables. Thus, it
arises as a special case of the P-distribution. Compared to the
approximation in [6], our approach has a number of benefits
which can be summarized as follows:

• The Rician shadowed distribution (κ-µ shadowed distri-
bution with µ = 1) and the Rician distribution have a
diversity order equal to one, as opposed to the Nakagami-
m distribution, for which the diversity order is m. Thus,
approximating the Rician distribution by the Rician shad-
owed distribution does not affect the diversity order.

• In practice, LOS channels will not be purely Rician
because of the inherent fluctuation of the LOS component
[18]. In fact, the κ-µ shadowed fading model always
provides a better fit to real measurements than the Rician
fading model alone, just because the latter is a special
case of the former. Thus, the P-distribution is not only
simpler and more general than the Rician product distri-
bution, but also closer to the real behavior of the fading
channel.

With all the above considerations, the performance of WPC
systems in LOS scenarios can be easily evaluated when
considering the P-distribution. Assuming that S transmits at
a constant rate Rc, which may be subjected to outage due to
fading, the average throughput can be evaluated as

RDC = (1− Pout)Rc (1− τ) (16)

where Pout = Pr {γ < γth} is the outage probability, being
γth the minimum SNR required for a reliable communication.
As previously stated, the distribution of the product ‖h‖2 · |g|2
can be modeled as a product of two independent squared κ-µ
shadowed variables with a proper choice of parameters. Thus,
the outage probability can be obtained from (9) following the
same steps in [6] as
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Fig. 1: Average Throughput RDC vs. average SNR, for different values of N .
LOS×NLOS scenario. MC simulations correspond to the Rician-Rayleigh case.
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IV. NUMERICAL RESULTS

We now use the results in the previous subsection for
evaluating to what extent the Rician product channel can
be approximated by a Nakagami-m product channel, in the
context of WPC scenarios. The following set of parameters
is considered, in coherence with those used in [6]: Rc = 1
bps/Hz, which implies an outage SNR threshold given by
γth = 2Rc − 1 = 1, the harvesting time is set to 50% of the
interval T , the energy conversion efficiency is set to η = 0.4,
the path loss exponent is set to α = 2.5, and distances are set
to be d1 = 8 m and d2 = 15 m, respectively.

In Fig. 1, the throughput obtained from (16) is evaluated
as a function of the average SNR, for different numbers of
antennas at the PBs. Because of the beamforming strategy
used by the PBs, the distribution of ‖h‖2 is that of a squared
κ-µ random variable. We first assume that the channel between
the source S and the destination D is NLOS as in [6], so it
can be safely modeled by a Rayleigh fading channel. Thus, we
here compare two alternatives for evaluating (16): the first one
is approximating ‖h‖2 by a squared Nakagami-m (gamma)
distribution with m = (1 + K)2/(1 + 2K) · N as in [6],
and then using the statistics of a Nakagami-Rayleigh product
channel; the second one is using the P-distribution with κ =
K, µ = N , κ̂ = 0, µ̂ = 1, and sufficiently large m and m̂
(i.e. m = m̂ = 20). We consider K = 3 +

√
12 as in [6]. We

observe that both approaches yield very similar results for the
set of parameters here considered. Thus, the approximation
can be safely used for a product channel built from a LOS
and a NLOS individual channels, for the evaluation of (16).
The average throughput saturates at RDC ≈ Rc (1− τ) for
sufficiently large SNR.

However, things change when both channels are considered
to be LOS. In Fig. 2, the S-D link is also assumed to be
LOS with equal K parameter as in Fig. 1. We now see a
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noticeable difference between the approximation in [6] and
the exact result using the P-distribution with κ = κ̂ = K,
µ = N , µ̂ = 1 and m = m̂ = 20, which perfectly matches
the Monte-Carlo simulations run for the Rician product case.
This becomes even more evident when analyzing the tail
behavior of the outage probability in Fig. 3, where the different
diversity orders of the Nakagami-m distribution and the Rician
distribution can be observed. Thus, in this scenario it is not
recommended to use the Nakagami-m product channel to
approximate the Rician product channel.

V. CONCLUSIONS

We introduced a new model based on the product of
two INID κ-µ shadowed RVs, which has allowed us to
characterize LOS product channels models with very simple
closed-form expressions. The usefulness of the results has
been exemplified through the analysis of wireless powered
communications. Specifically, we have observed that previous
channel approximations based on the Nakagami-m distribution
failed to provide good accuracy for such non-ergodic measures

in LOSxLOS scenarios. Moreover, our model allows for
simplifying previous exact theoretical results for LOSxLOS
and LOSxNLOS product channels.
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