1,695 research outputs found

    Vehicle routing with varying levels of demand information

    Get PDF
    The vehicle routing problem is the problem of serving a set of customers with a fleet of vehicles such that the travel costs of those vehicles are minimized, while making sure each vehicle starts and ends at a central depot. In this thesis, we focus on exact methodology for the vehicle routing problem with three different levels of demand information: deterministic, stochastic and sensor-driven.First, we look at set partitioning and set covering problems that are solved by a branch-price-and-cut algorithm. We introduce a new category of cuts, called “resource-robust”, which do not complicate the pricing problem if specific resources are included. We create new cuts for the capacitated vehicle routing problem, with deterministic demands, that are resource-robust when the ng-route relaxation is used, which leads to speedups for certain instances.Second, we focus on the vehicle routing problem with stochastic demands. We develop a state-of-the-art integer L-shaped method to solve the problem to optimality. The algorithm uses all techniques from the literature, improves on some of these and uses new valid inequalities. Using this algorithm, we also investigate three commonly-made assumptions in the literature from a theoretical and computational perspective.Third, we investigate a single-period waste collection problem with sensors. We can adjust our routing decisions based on the sensor readings. We derive theoretical properties and develop an algorithm to approximate the cost savings achieved given a certain sensor placement. Then, we investigate the effectiveness of several sensor placement rules and how they fare under sensor uncertainty.<br/

    A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands

    Get PDF
    In this article we introduce a new exact solution approach to the Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD). In particular, we consider the case where all customer demands are distributed independently and where each customer’s demand follows a Poisson distribution. The CVRPSD can be formulated as a Set Partitioning Problem. We show that, under the above assumptions on demands, the associated column generation subproblem can be solved using a dynamic programming scheme which is similar to that used in the case of deterministic demands. To evaluate the potential of our approach we have embedded this column generation scheme in a branch-and-price algorithm. Computational experiments on a large set of test instances show promising resultsRouting; Stochastic programming; Logistics; Branch and Bound; Dynamic programming

    Exact Two-Step Benders Decomposition for Two-Stage Stochastic Mixed-Integer Programs

    Get PDF
    Many real-life optimization problems belong to the class of two-stage stochastic mixed-integer programming problems with continuous recourse. This paper introduces Two-Step Benders Decomposition with Scenario Clustering (TBDS) as a general exact solution methodology for solving such stochastic programs to optimality. The method combines and generalizes Benders dual decomposition, partial Benders decomposition, and Scenario Clustering techniques and does so within a novel two-step decomposition along the binary and continuous first-stage decisions. We use TBDS to provide the first exact solutions for the so-called Time Window Assignment Traveling Salesperson problem. This is a canonical optimization problem for service-oriented vehicle routing; it considers jointly assigning time windows to customers and routing a vehicle among them while travel times are stochastic. Extensive experiments show that TBDS is superior to state-of-the-art approaches in the literature. It solves instances with up to 25 customers to optimality. It provides better lower and upper bounds that lead to faster convergence than related methods. For example, Benders dual decomposition cannot solve instances of 10 customers to optimality. We use TBDS to analyze the structure of the optimal solutions. By increasing routing costs only slightly, customer service can be improved tremendously, driven by smartly alternating between high- and low-variance travel arcs to reduce the impact of delay propagation throughout the executed vehicle route

    Exact solutions to a class of stochastic generalized assignment problems

    Get PDF
    This paper deals with a stochastic Generalized Assignment Problem with recourse. Only a random subset of the given set of jobs will require to be actually processed. An assignment of each job to an agent is decided a priori, and once the demands are known, reassignments can be performed if there are overloaded agents. We construct a convex approximation of the objective function that is sharp at all feasible solutions. We then present three versions of an exact algorithm to solve this problem, based on branch and bound techniques, optimality cuts, and a special purpose lower bound. numerical results are reported.

    Recourse policies in the vehicle routing problem with stochastic demands

    Full text link
    Dans le domaine de la logistique, de nombreux problĂšmes pratiques peuvent ĂȘtre formulĂ©s comme le problĂšme de tournĂ©es de vĂ©hicules (PTV). Dans son image la plus large, le PTV vise Ă  concevoir un ensemble d’itinĂ©raires de collecte ou de livraison des marchandises Ă  travers un ensemble de clients avec des coĂ»ts minimaux. Dans le PTV dĂ©terministe, tous les paramĂštres du problĂšme sont supposĂ©s connus au prĂ©alable. Dans de nombreuses variantes de la vie rĂ©elle du PTV, cependant, ils impliquent diverses sources d’alĂ©atoire. Le PTV traite du caractĂšre alĂ©atoire inhĂ©rent aux demandes, prĂ©sence des clients, temps de parcours ou temps de service. Les PTV, dans lesquels un ou plusieurs paramĂštres sont stochastiques, sont appelĂ©s des problĂšmes stochastiques de tournĂ©es de vĂ©hicules (PSTV). Dans cette dissertation, nous Ă©tudions spĂ©cifiquement le problĂšme de tournĂ©es de vĂ©hicules avec les demandes stochastiques (PTVDS). Dans cette variante de PSTV, les demandes des clients ne sont connues qu’en arrivant Ă  l’emplacement du client et sont dĂ©finies par des distributions de probabilitĂ©. Dans ce contexte, le vĂ©hicule qui exĂ©cute une route planifiĂ©e peut ne pas rĂ©pondre Ă  un client, lorsque la demande observĂ©e dĂ©passe la capacitĂ© rĂ©siduelle du vĂ©hicule. Ces Ă©vĂ©nements sont appelĂ©s les Ă©checs de l’itinĂ©raire; dans ce cas, l’itinĂ©raire planifiĂ© devient non-rĂ©alisable. Il existe deux approches face aux Ă©checs de l’itinĂ©raire. Au client oĂč l’échec s’est produit, on peut rĂ©cupĂ©rer la realisabilite en exĂ©cutant un aller-retour vers le dĂ©pĂŽt, pour remplir la capacitĂ© du vĂ©hicule et complĂ©ter le service. En prĂ©vision des Ă©checs d’itinĂ©raire, on peut exĂ©cuter des retours prĂ©ventifs lorsque la capacitĂ© rĂ©siduelle est infĂ©rieure Ă  une valeur seuil. Toutes les dĂ©cisions supplĂ©mentaires, qui sont sous la forme de retours au dĂ©pĂŽt dans le contexte PTVDS, sont appelĂ©es des actions de recours. Pour modĂ©liser le PTVDS, une politique de recours, rĂ©gissant l’exĂ©cution des actions de recours, doit ĂȘtre conçue. L’objectif de cette dissertation est d’élaborer des politiques de recours rentables, dans lesquelles les conventions opĂ©rationnelles fixes peuvent rĂ©gir l’exĂ©cution des actions de recours. Nous fournissons un cadre gĂ©nĂ©ral pour classer les conventions opĂ©rationnelles fixes pour ĂȘtre utilisĂ©es dans le cadre PTVDS. Dans cette classification, les conventions opĂ©rationnelles fixes peuvent ĂȘtre regroupĂ©es dans (i) les politiques basĂ©es sur le volume, (ii) les politiques basĂ©es sur le risque et (iii) les politiques basĂ©es sur le distance. Les politiques hybrides, dans lesquelles plusieurs rĂšgles fixes sont incorporĂ©es, peuvent ĂȘtre envisagĂ©es. Dans la premiĂšre partie de cette thĂšse, nous proposons une politique fixe basĂ©e sur les rĂšgles, par laquelle l’exĂ©cution des retours prĂ©ventifs est rĂ©gie par les seuils prĂ©dĂ©finis. Nous proposons notamment trois politiques basĂ©es sur le volume qui tiennent compte de la capacitĂ© du vĂ©hicule, de la demande attendue du prochain client et de la demande attendue des clients non visitĂ©s. La mĂ©thode “Integer L-Shaped" est rĂ©amĂ©nagĂ©e pour rĂ©soudre le PTVDS selon la politique basĂ©e sur les rĂšgles. Dans la deuxiĂšme partie, nous proposons une politique de recours hybride, qui combine le risque d’échec et de distance Ă  parcourir en une seule rĂšgle de recours, rĂ©gissant l’exĂ©cution des recours. Nous proposons d’abord une mesure de risque pour contrĂŽler le risque d’échec au prochain client. Lorsque le risque d’échec n’est ni trop Ă©levĂ© ni trop bas, nous utilisons une mesure de distance, ce qui compare le coĂ»t de retour prĂ©ventif avec les coĂ»ts d’échecs futurs. Dans la derniĂšre partie de cette thĂšse, nous dĂ©veloppons une mĂ©thodologie de solution exacte pour rĂ©soudre le VRPSD dans le cadre d’une politique de restockage optimale. La politique de restockage optimale rĂ©sulte d’un ensemble de seuils spĂ©cifiques au client, de sorte que le coĂ»t de recours prĂ©vu soit rĂ©duit au minimum.In the field of logistics, many practical problems can be formulated as the vehicle routing problem (VRP). In its broadest picture, the VRP aims at designing a set of vehicle routes to pickup or delivery goods through a set of customers with the minimum costs. In the deterministic VRP, all problem parameters are assumed known beforehand. The VRPs in real-life applications, however, involve various sources of uncertainty. Uncertainty is appeared in several parameters of the VRPs like demands, customer, service or traveling times. The VRPs in which one or more parameters appear to be uncertain are called stochastic VRPs (SVRPs). In this dissertation, we examine vehicle routing problem with stochastic demands (VRPSD). In this variant of SVRPs, the customer demands are only known upon arriving at the customer location and are defined through probability distributions. In this setting, the vehicle executing a planned route may fail to service a customer, whenever the observed demand exceeds the residual capacity of the vehicle. Such occurrences are called route failures; in this case the planned route becomes infeasible. There are two approaches when facing route failures. At the customer where the failure occurred, one can recover routing feasibility by executing back-and-forth trips to the depot to replenish the vehicle capacity and complete the service. In anticipation of route failures, one can perform preventive returns whenever the residual capacity falls below a threshold value. All the extra decisions, which are in the form of return trips to the depot in the VRPSD context, preserving routing feasibility are called recourse actions. To model the VRPSD, a recourse policy, governing the execution of such recourse actions, must be designed. The goal of this dissertation is to develop cost-effective recourse policies, in which the fixed operational conventions can govern the execution of recourse actions. In the first part of this dissertation, we propose a fixed rule-based policy, by which the execution of preventive returns is governed through the preset thresholds. We particularly introduce three volume based policies which consider the vehicle capacity, expected demand of the next customer and the expected demand of the remaining unvisited customers. Then, the integer L-shaped algorithm is redeveloped to solve the VRPSD under the rule-based policy. The contribution with regard to this study has been submitted to the Journal of Transportation Science. In the second part, we propose a hybrid recourse policy, which combines the risk of failure and distances-to-travel into a single recourse rule, governing the execution of recourse actions. We employ a risk measure to control the risk of failure at the next customer. When the risk of failure is neither too high nor too low, we apply a distance measure, which compares the preventive return cost with future failures cost. The contribution with regard to this study has been submitted to the EURO Journal on Transportation and Logistics. In the last part of this dissertation, we develop an exact solution methodology to solve the VRPSD under an optimal restocking policy. The optimal restocking policy derives a set of customer-specific thresholds such that the expected recourse cost is minimized. The contribution with regard to this study will be submitted to the European Journal of Operational Research

    The Pyramidal Capacitated Vehicle Routing Problem

    Get PDF
    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal route is de ned as a route on which the vehicle rst visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index. Provided that customers are indexed in nondecreasing order of distance from the depot, the shape of a pyramidal route is such that its traversal can be divided in two parts, where on the rst part of the route, customers are visited in nondecreasing distance from the depot, and on the remaining part of the route, customers are visited in nonincreasing distance from the depot. Such a route shape is indeed found in many optimal solutions to CVRP instances. An optimal solution to the PCVRP may therefore be useful in itself as a heuristic solution to the CVRP. Further, an attempt can be made to nd an even better CVRP solution by solving a TSP, possibly leading to a non-pyramidal route, for each of the routes in the PCVRP solution. This paper develops an exact branch-and-cut-and-price (BCP) algorithm for the PCVRP. At the pricing stage, elementary routes can be computed in pseudo-polynomial time in the PCVRP, unlike in the CVRP. We have therefore implemented pricing algorithms that generate only elementary routes. Computational results suggest that PCVRP solutions are highly useful for obtaining near-optimal solutions to the CVRP. Moreover, pricing of pyramidal routes may due to its eciency prove to be very useful in column generation for the CVRP.vehicle routing; pyramidal traveling salesman; branch-and-cut-and-price
    • 

    corecore