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Many real-life optimization problems belong to the class of two-stage stochastic mixed-integer programming

problems with continuous recourse. This paper introduces Two-Step Benders Decomposition with Scenario

Clustering (TBDS) as a general exact solution methodology for solving such stochastic programs to optimal-

ity. The method combines and generalizes Benders dual decomposition, partial Benders decomposition, and

Scenario Clustering techniques and does so within a novel two-step decomposition along the binary and con-

tinuous first-stage decisions. We use TBDS to provide the first exact solutions for the so-called Time Window

Assignment Traveling Salesperson problem. This is a canonical optimization problem for service-oriented

vehicle routing; it considers jointly assigning time windows to customers and routing a vehicle among them

while travel times are stochastic. Extensive experiments show that TBDS is superior to state-of-the-art

approaches in the literature. It solves instances with up to 25 customers to optimality. It provides better

lower and upper bounds that lead to faster convergence than related methods. For example, Benders dual

decomposition cannot solve instances of 10 customers to optimality. We use TBDS to analyze the structure

of the optimal solutions. By increasing routing costs only slightly, customer service can be improved tremen-

dously, driven by smartly alternating between high- and low-variance travel arcs to reduce the impact of

delay propagation throughout the executed vehicle route.

Key words : Partial Benders Decomposition, Benders Dual Decomposition, Time Window Assignment,

Vehicle Routing, Stochastic Programming

History :

1. Introduction

Two-stage stochastic programming has emerged as a prominent strategy for making decisions in the

face of uncertainty. This strategy involves initial first-stage decisions before uncertainty is resolved

and second-stage recourse decisions after uncertainty is realized. The objective is to minimize the

expected cost associated with both sets of decisions. Numerous real-world applications can be effec-

tively modeled using two-stage stochastic programming, incorporating binary and continuous first-

stage decisions. For example, Facility Location (Schiffer et al. 2019), Stochastic Inventory Routing

(Cui et al. 2023), and Time Window Assignment Vehicle Routing (Vareias, Repoussis, and Tarantilis
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2019) are commonly addressed using two-stage stochastic programming. In Facility Location, binary

variables determine which locations to open and what customers to assign, while continuous vari-

ables define facility capacity. In Stochastic Inventory Routing, binary variables define vehicle routes,

while continuous variables represent the delivery amount. Similarly, in Time Window Assignment

Vehicle Routing, binary variables determine vehicle routes, and continuous variables model decisions

regarding time window assignments to customers. In two-stage stochastic programs, uncertainty is

typically represented by constructing a well-defined set of scenarios. Benders decomposition-inspired

approaches are commonly utilized to decompose the problem across these scenarios. However, despite

employing such techniques, for many problems, it remains challenging to achieve optimal solutions.

Recently, two distinct research streams made notable contributions toward solving general two-

stage stochastic programs. The first stream centers around Benders decomposition, which expe-

rienced a resurgence in scientific attention with the introduction of Benders dual decomposition

(Rahmaniani et al. 2020) and partial Benders decomposition (Crainic et al. 2021). However, when

applied to two-stage stochastic programs with binary and continuous first-stage decision variables,

these approaches often require numerous iterations of generating relatively weak optimality and

feasibility cuts, primarily due to low-quality solutions in early iterations (Rahmaniani et al. 2017).

The second stream focuses on generating a compact set of scenarios that accurately captures the

underlying uncertainty by utilizing scenario clustering techniques aimed at enhancing computational

performance in general (see, e.g. Keutchayan, Munger, and Gendreau 2020). To this date, it remains

an open question of how such techniques can improve the computational efficiency of state-of-the-art

Benders decomposition approaches, such as Benders dual decomposition or partial Benders decom-

position.

This paper introduces Two-Step Benders Decomposition with Scenario Clustering (TBDS), an

exact method specifically designed to solve two-stage stochastic programs involving binary and con-

tinuous first-stage decisions. The effectiveness of TBDS stems from combining two fundamental ideas.

Firstly, we employ a novel two-step decomposition approach that effectively handles the first-stage

binary and continuous decision variables to generate optimality and feasibility cuts. This two-step

decomposition approach enhances the quality of the first-stage continuous variables, resulting in

stronger cuts than existing methods. Secondly, TBDS integrates recent advancements in scenario-

clustering techniques for stochastic programming (see, e.g., Keutchayan, Ortmann, and Rei 2023),

hereby generalizing the principles of partial Benders decomposition. Furthermore, we incorporate

the concepts from Benders dual decomposition within TBDS and embed it within a branch-and-cut

framework.

The first key concept of TBDS involves decomposing the two-stage stochastic program into a

master problem and N + 1 subproblems, where N represents the number of scenarios. The initial
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subproblem corresponds to the first step of the two-step decomposition, focusing solely on the binary

decision variables from the master problem and considering a single continuous subproblem. This first

step offers a notable advantage by producing a more robust solution for the continuous first-stage

decisions, which is then utilized in combination with the binary first-stage solution in the subse-

quent N single-scenario subproblems. Consequently, this two-step approach generates significantly

stronger optimality cuts leading to faster convergence to the optimal solution.

The second key concept of TBDS involves generalizing partial Benders decomposition by incorpo-

rating representative scenarios into the master program. These representative scenarios are carefully

selected, allowing us to optimize our decisions in the first stage before the uncertainty is observed.

The selection of the scenario set involves a trade-off: a larger set of scenarios reflects underlying

uncertainty better but increases computational complexity. There is growing interest in scenario gen-

eration and reduction methods to address this trade-off. These methods can be categorized as either

distribution-driven, such as those proposed by, e.g., Kleywegt, Shapiro, and Homem-de Mello (2002),

Henrion, Küchler, and Römisch (2009), Pflug and Pichler (2015), or problem-driven, as discussed by,

e.g., Henrion and Römisch (2018), Keutchayan, Ortmann, and Rei (2023), and this paper.

The main methodological contributions of this paper are threefold:

1. We introduce a new exact solution approach, Two-Step Benders decomposition with Sce-

nario Clustering (TBDS), for solving two-stage stochastic mixed-integer programs with continuous

recourse. Our TBDS method incorporates two main ideas: a two-step decomposition focusing on the

first-stage binary and continuous variables and the utilization of scenario clustering techniques to

generalize partial Benders decomposition.

2. Our TBDS method combines and extends the state-of-the-art approaches in Benders decom-

position by incorporating Benders dual decomposition throughout its components. A special case of

our TBDS method combines Benders dual decomposition and partial Benders decomposition.

3. We furthermore generalize partial Benders decomposition by incorporating the ideas from

Keutchayan, Ortmann, and Rei (2023) to determine representative scenarios of the underlying uncer-

tainty, a problem-driven scenario generation method. As far as the authors know, TBDS is the first

exact method that combines problem-driven scenario generation methods with state-of-the-art Ben-

ders decomposition.

We evaluate TBDS’s performance using the Time Window Assignment Traveling Salesperson

Problem with Stochastic Travel Times (TWATSP-ST), a canonical optimization problem in service-

oriented vehicle routing. This problem represents a two-stage stochastic program with binary

(routing) and continuous (time window assignment) first-stage decision variables and continuous

second-stage decision variables related to time window violation. The TWATSP-ST thereby aligns

with the active research stream on vehicle routing that considers time window assignment as
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an integral part of the optimization problem (see, e.g., Spliet, Dabia, and Van Woensel (2018);

Vareias, Repoussis, and Tarantilis (2019)), rather than solely adhering to exogenously given time

window constraints (see, e.g., Paradiso et al. (2020); Wölck and Meisel (2022)). We summarize our

contributions on the intersection of time window assignment and routing as follows:

4. We present the first exact method for jointly optimizing time window assignment and rout-

ing by applying TBDS to the TWATSP-ST. Extensive computational experiments demonstrate the

superior performance of TBDS on the TWATSP-ST, surpassing existing state-of-the-art approaches

like Benders dual decomposition and partial Benders decomposition. TBDS solves instances with up

to 25 customers to optimality.

5. By solving the TWATSP-ST to optimality, we automatically cater for delay propaga-

tion throughout the execution of a vehicle route. This has either not been accounted for

(Vareias, Repoussis, and Tarantilis 2019), or has only be studied with exogenously given time win-

dows (Ehmke, Campbell, and Urban 2015).

6. Our analysis of optimal solutions provides valuable managerial insights, highlighting the advan-

tages of flexible time window assignments and the importance of considering stochasticity in decision-

making. Specifically, we compare the performance of the stochastic solution obtained by TBDS

against the TSP solution (assuming a vehicle drives the shortest route), expected value solution

(assuming travel times follow their expectation), and fixed time window assignment solution (assum-

ing all time windows among customers are of the same length). We show that simultaneously optimiz-

ing time windows and routing leads to a noteworthy 12.8% improvement in total costs while incurring

only a minor increase in routing costs. Furthermore, we show that the value of the stochastic solution

is 6.2%, further highlighting the potential benefits of incorporating stochasticity in decision-making

processes.

The remainder of the paper is organized as follows. In Section 2, we briefly overview the rele-

vant background on Benders decomposition. Section 3 presents the TBDS methodology, explaining

the associated mathematical models and cuts. Section 4 discusses the application of TBDS on the

TWATSP-ST. Section 5 provides computational results on the performance of TBDS and managerial

results associated with solving the TWATSP-ST. We conclude this paper and provide avenues for

future research in Section 6.

2. Background on Benders Decomposition

In this section, we first provide an overview of Benders decomposition and then discuss Benders

dual decomposition, highlighting the fundamental formulations necessary for introducing TBDS in

Section 3.
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2.1. Benders Decomposition

Dantzig (1955) and Slyke and Wets (1969) were the first to propose algorithms for solving two-stage

stochastic linear programs. Slyke and Wets (1969) developed the L-shaped method that exploits the

block-angular structure of two-stage stochastic models aligning with the decomposition structure and

cut generation principles of Benders decomposition (Benders 1962). Since then, many variants and

tailored Benders decomposition algorithms have been proposed, but the core ideas remain similar.

Due to the independence of scenarios (reflecting the realization of random vectors), two-stage stochas-

tic programs are decomposable over scenarios, resulting in a master program and one or multiple

subproblems, each representing the second-stage problems associated with a scenario ω ∈ Ω, where Ω

is a finite set of scenarios or realized random events. Throughout this paper, we denote dependency

on ω via a subscript. At some points (see Section 4), this notation becomes inconvenient. In that

case, we denote it as a functional form.

We introduce Benders decomposition through a two-stage stochastic programming problem of the

following generic form

min{cTx+
∑

ω∈Ω

pωQ(x,ω) :Ax= a, x∈ Z
n1
+ }, (1)

with

Q(x,ω) =min{fT
ω zω :Wωzω = hω −Tωx, zω ∈ R

m
+ } ∀ ω ∈ Ω, (2)

where c ∈ R
n1 , A∈ R

k1×n1 , a∈ R
k1 , fω ∈ R

m, Wω ∈ R
ℓ×m, hω ∈ R

ℓ, and Tω ∈ R
ℓ×n1 . Here, pω ∈ R

denotes the probability of observing scenario ω ∈ Ω.

We define the master program (MP) as

MP = min{cTx+ θ} :Ax= a, x∈ Z
n1
+ , θ ∈R}.

An auxiliary decision variable θ approximates the recourse function Q(x) =
∑

ω∈Ω pωQ(x,ω) in the

master program. By utilizing the dual of the Second-Stage Subproblem (2) for a scenario ω ∈ Ω, we

produce a set of valid inequalities referred to as the optimality and feasibility cuts for the first-stage

decision variables. If the dual of Subproblem (2) for a scenario ω ∈ Ω given solution x∗ is unbounded,

implying that the primal subproblem is infeasible, we generate feasibility cuts with the unbounded

extreme ray to cut off the solution x∗. If the dual of Subproblem (2) for a scenario ω ∈ Ω given

solution x∗ is feasible, we generate optimality cuts with the extreme points of the dual problem.

Optimality cuts provide a lower bound on the expected cost of the recourse function Q(x,ω).
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2.2. Benders Dual Decomposition

Recently, Rahmaniani et al. (2020) introduced Benders dual decomposition (BDD) as a version of

Benders decomposition that uses strengthened Benders and Lagrangian cuts.

The BDD method generates Lagrangian cuts by heuristically solving a Lagrangian cut generation

problem. Rahmaniani et al. (2020) numerically show that Lagrangian cuts close the gap at the root

node substantially for a variety of stochastic integer problems. They propose a family of strengthened

optimality and feasibility cuts that dominate the classical Benders cuts at fractional points of the

master problem.

By defining x∗ as the current master problem solution, we can reformulate the recourse function

Q(x,ω) for each scenario ω ∈ Ω as

Q(x∗, ω) = min
xω,zω

{fT
ω zω :Axω = a,Wωzω = hω −Tωxω, xω = x∗, xω ∈R

n1
+ , zω ∈R

m
+ }. (3)

The following optimality cut is derived by solving problem (3)

θ≥
∑

ω∈Ω

pωf
T
ω z̄ω + (x− x̄ω)Tλ∗

ω, (4)

where z̄ω and x̄ω represent the optimal solution of the subproblem (3) and λ∗
ω are the dual variables

associated with constraints xω = x∗.

To strengthen (4), the BDD method prices out the constraints xω = x∗ into the objective function

using the dual multipliers λω. By doing so, we obtain the following Lagrangian dual problem for each

ω ∈ Ω

max
λω

min
xω,zω

{fT
ω zω −λT

ω (xω −x∗) :Axω = a,Wωzω = hω −Tωx}.

Then, given x∗ ∈ R
n1 and λ∗

ω ∈ R
n1 for ω ∈ Ω, let (z̄ω, x̄ω) be an optimal solution obtained by solving

the following problem

min{fT
ω zω −λ∗

ω
T (xω −x∗) :Axω = a,Wωzω = hω −Tωxω, xω ∈ Z

n1
+ , zω ∈R

m
+ }.

The strengthened optimality cut is valid for MP and given by

θ≥
∑

ω∈Ω

pωf
T
ω z̄ω + (x− x̄ω)Tλ∗

ω. (5)

3. Exact Two-Step Benders Decomposition with Scenario Clustering (TBDS)

We propose a general exact solution method for two-stage stochastic programs with mixed binary and

continuous first-stage decision variables and continuous second-stage decision variables. The overall

method is a branch-and-cut approach, of which the algorithmic details are discussed at the end of
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this section. We assume that our problems are primal feasible and bounded. Let ξ(·) represent a

random vector on a finite scenario sample space Ω. Specifically, ξω denotes the particular realization

of the random vector in scenario ω ∈ Ω, with pω as the associated probability. In the remainder of

this paper, we work directly with pω.

Three elements play a key role in the Two-Step Benders Decomposition with Scenario Clustering

(TBDS):

1. We consider a Master Problem (MP) with two associated (sets of) subproblems. The first

subproblem, SP1, arises from fixing the binary variables in the MP, leading to a linear programming

problem acting on the continuous first-stage variables and all continuous second-stage variables. The

second subproblem SP2 is obtained by fixing the binary first-stage variables obtained from the master

problem and taking the continuous second-stage variables as the solution of SP1, resulting in one

subproblem SP2 per scenario.

2. Considering scenarios and the associated second-stage constraints directly in the MP prevents

generating superfluous optimality cuts. It influences the total number of subproblems SP2 from

which we generate these optimality cuts. We generalize this idea by considering recent advances in

scenario clustering techniques within stochastic programming. This helps to reduce the number of

weak first-stage solutions in early iterations of the method.

3. We use Benders dual decomposition to strengthen the optimality cuts we derive from our sub-

problems, and embed all the aforementioned concepts in a branch-and-cut algorithm.

In the remainder of this paper, we consider the following two-stage stochastic mixed-integer pro-

gram with relatively complete continuous recourse

min
x,y,z

cTx+ dTy+
∑

ω∈Ω

pωf
T
ω zω (6)

s.t. Wωx+Tωy+Sωzω ≥ hω ∀ ω ∈ Ω, (7)

x∈ X , y ∈ Y , (8)

zω ∈ R
m
+ ∀ ω ∈ Ω. (9)

where c ∈ R
n1 , d ∈ R

n2 , fω ∈ R
m, Wω ∈ R

ℓ×n1 , Tω ∈ R
ℓ×n2 , Sω ∈ R

ℓ×m, and hω ∈ R
ℓ. We denote

first-stage constraints and their domains compactly as x ∈ X := {Ax = a, x ∈ Z
n1
+ } and y ∈

Y := {Bx= b, y ∈ R
n2
+ } where A ∈ R

k1×n1 , a ∈ R
k1 , B ∈ R

k2×n2 , and b ∈ R
k2 . Note the first-stage

decision variables are binary variables x and continuous variables y.

We reformulate the two-stage stochastic mixed-integer problem with continuous recourse by explic-

itly considering ΩMP (not necessarily subset of Ω) in the master problem (via second-stage constraints
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(7)) and ΩSP := Ω\ΩMP . We detail the construction of ΩMP in Section 3.2. The scenarios ΩSP impose

|ΩSP | subproblems SP2, from which we derive optimality cuts for our novel two-step decomposition.

Before we detail TBDS throughout the remainder of this section, we already state the Master

Problem (MP)

MP = min
x,y

cTx+ Θ +
∑

ω∈Ω1
MP

pωf
T
ω zω (10)

s.t. Wωx+Tωy+Sωzω ≥ hω ∀ ω ∈ ΩMP , (11)

Θ ≥ dT y+
∑

ω∈ΩSP

pωθω, (12)

Θ ≥
(

dT ȳ+
∑

ω∈ΩSP

pωf
T
ω z̄ω + (x− x̄)λ∗

)

i
∀ i ∈ I, (13)

θω ≥
(

pωf
T
ω ẑω + (x− x̂ω)ν∗

ω + (y− ŷω)η∗
ω

)

j
∀ j ∈ Jω, ω ∈ ΩSP , (14)

0 ≥
(

1

T ǫ+ (x− x̄)λ∗
)

k
∀ k ∈K, (15)

x∈ X , y ∈ Y ,Θ ∈ R+, (16)

zω ∈R
m
+ , θω ∈ R+ ∀ ω ∈ Ω. (17)

We introduce the auxiliary variables Θ and θω,∀ ω ∈ ΩSP . Here, Θ approximates the objective

function of SP1 while θω approximates the SP2 subproblem cost. In MP, we minimize the total cost

associated with x, θ, and the expected second-stage cost of included scenarios (Ω1
MP ). Constraints

(11) are the second-stage constraints. Constraint (12) is called the subproblem connectivity constraint

and its use will be explained later in this section. Constraints (13) - (14) are the optimality cuts.

Constraints (15) are the feasibility cuts. The sets I, Jω and K refer to the complete set of feasibility

and/or optimality cuts. The parameters and variables appearing in these constraints will be detailed

in the remainder of this section at the appropriate moments to enhance readability. Constraints (16)

and (17) restrict the variable domains.

3.1. Subproblem Decomposition, Optimality Cuts, and Subproblem-Connectivity Constraint

Classic Benders decomposition decomposes first- and second-stage decisions, but the continuous first-

stage variables reduce the efficiency of the resulting optimality cuts as MP loses the information

regarding the second stage. Therefore, TBDS proposes a two-step decomposition. After solving MP,

we first take the binary variables fixed and derive optimality and feasibility cuts based on SP1.

Then, we take the solution of the continuous first-stage variables from SP1 together with the binary

variables from MP and derive optimality cuts on the scenario subproblems SP2. We will detail each

of these cuts consecutively.
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The solution values of the MP define lower bounds for (6) - (9). We solve the MP using branch-

and-cut and thus dynamically include the aforementioned cuts while exploring the branch-and-bound

tree. At each node of the branch-and-bound tree, the solution x∗ is fixed in the primal subproblem

(SP1)

SP1(x∗) = min
y,z

{dT y+
∑

ω∈ΩSP

pωf
T
ω zω |Wωx+Tωy+Sωzω ≥ hω ∀ ω ∈ Ω, x= x∗, y ∈ Y , zω ∈R

m
+ }.

Let λ∗ be the dual multipliers associated with the constraints x= x∗. If primal subproblem (SP1)

is infeasible for x∗, we solve the feasibility problem

min
x,y,z,ǫ

{1T ǫ :Wωx+Tωy+Sωzω + ǭ≥ hω ∀ ω ∈ ΩSP , x= x∗, y ∈ Y , zω ∈ R
m
+ , ǫ∈ R

ℓ
+}. (18)

This generates a feasibility cut of the form

0 ≥ 1

T ǭ+ (x− x̄)Tλ∗, (Feasibility Cut) (19)

where ǭ and x̄ refer to the values of ǫ and x in the optimal solution to the feasibility problem (18),

and 1 is a vector of ones of size ℓ.

If the primal subproblem (SP1) returns a feasible solution (ȳ, z̄), we derive the optimality cut

Θ ≥ dT ȳ+
∑

ω∈ΩSP

pωf
T
ω z̄ω + (x− x̄)Tλ∗ (Aggregated Optimality Cut) (20)

We do not decompose SP1 over the scenarios because it is a linear program and, thus, easy to

solve computationally. Including all scenarios provides more information and thus results in relatively

‘good’ first-stage decisions. The second (set of) subproblems is obtained by decomposing into single

scenario second-stage subproblems for a given ȳ obtained as the optimal solution of SP1 and x∗ as

the optimal solution to (the linear relaxation of) MP. That is,

SP2(x∗, ȳ, ω) = min
xω,yω,zω

{fT
ω zω :Wωxω +Tωy+Sωzω ≥ hω, xω = x∗, yω = ȳ, xω ∈ R

n1
+ , yω ∈ R

n2
+ , zω ∈R

m
+ }.

Note we only construct SP2 if SP1 is feasible; thus, SP2 is feasible by construction. Let νω and

ηω denote the dual multipliers to the constraints yω = ȳ and xω = x∗ in SP2(x∗, ȳ, ω), respectively.

Then, the following optimality cut can be derived

θω ≥ pωf
T
ω ẑω + (x− x̂ω)Tν∗

ω + (y− ŷω)Tη∗
ω (Scenario Optimality Cut), (21)

where (x̂ω, ŷω, ẑω) is the optimal solution of SP2(x∗, ȳ, ω).

If x∗ is fractional and feasible, the steps presented in Section 2.2 improve the optimality cut (21).

We price out the constraints xω = x∗ into the objective function of SP2 with dual multiplier νω. The

resulting subproblem then asks for solving

min
xω,yω,zω

{fT
ω zω + (xω −x∗)Tν∗

ω :Wωxω +Tωy+Sωzω ≥ hω, yω = ȳ, xω ∈ Z
n1
+ , yω ∈R

n2
+ , zω ∈R

m
+ } (22)
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Then, given ν∗
ω for ω ∈ Ω, let (ỹω, x̃ω, z̃ω) be an optimal solution obtained by solving problem (22).

The strengthened optimality cut

θω ≥ pωf
T
ω z̃ω + (x− x̃ω)Tν∗

ω + (y− ỹω)T η∗
ω, (23)

where η∗
ω is the dual variable associated with the constraint yω = ȳ in (22) is valid for MP.

We now derived two sets of optimality cuts, one for the aggregated subproblem SP1 and |ΩSP |

for each individual scenario subproblem, along the lines of our two-step decomposition. To obtain a

valid MP formulation, recall the Subproblem-Connectivity Constraint Θ ≥ dT y+
∑

ω∈Ω pωθω in MP.

This ensures that we also include θω for ω ∈ Ω via Θ in the objective function of the MP such that

constraints (21) and (23) can improve the lower bound in each iteration.

Proposition 1. For a given feasible solution (x̂ω, ŷω, ẑω) of SP2, Constraint (21) is a valid opti-

mality cut for MP if

Θ ≥ dT y+
∑

ω∈ΩSP

pωθω (24)

is part of MP.

Proof: Consider the MP ′ below.

MP ′ = min
x,y

cTx+ dT y+
∑

ω∈ΩSP

pωθω +
∑

ω∈Ω1
MP

pωf
T
ω zω

s.t. Wωx+Tωy+Sωzω ≥ hω ∀ ω ∈ ΩMP ,

θω ≥
(

pωf
T
ω ẑω + (x− x̂ω)ν∗

ω + (y− ŷω)η∗
ω

)

j
∀ j ∈ Jω, ω ∈ ΩSP ,

0 ≥
(

1

T ǫ+ (x− x̄)λ∗
)

k
∀ k ∈K,

x∈ X , y ∈ Y , zω ∈R
m
+ , Θ ∈ R

+, θω ∈R
+ ∀ ω ∈ Ω.

We want to show that the Constraint (21) is a valid optimality cut for the MP with the inclusion of

Constraint (24) by showing the equivalence of MP ′ and MP. MP ′ yields the same objective value as

in MP when Constraint (21) is added iteratively (the proof follows from the L-shaped method, see

Van Slyke and Wets (1969)). Keeping in mind that the above problem is a minimization problem, Θ

is lower bounded by dT y+
∑

ω∈ΩSP
pωθω and constraint (20), i.e.,

Θ ≥ max







dT y+
∑

ω∈ΩSP

pωθω, dT ȳ+
∑

ω∈ΩSP

pωf
T
ω z̄ω + (x− x̄)Tλ∗







We can linearize this constraint and rewrite the problem equivalently as

MP ′ = min
x,y

cTx+ Θ +
∑

ω∈Ω1
MP

pωf
T
ω zω
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s.t. Wωx+Tωy+Sωzω ≥ hω ∀ ω ∈ ΩMP ,

Θ ≥ dT y+
∑

ω∈ΩSP

pωθω,

Θ ≥ dT ȳ+
∑

ω∈ΩSP

pωf
T
ω z̄ω + (x− x̄)Tλ∗,

θω ≥
(

pωf
T
ω ẑω + (x− x̂ω)ν∗

ω + (y− ŷω)η∗
ω

)

j
∀ j ∈ Jω, ω ∈ ΩSP ,

0 ≥
(

1

T ǫ+ (x− x̄)λ∗
)

k
∀ k ∈K,

x∈ X , y ∈ Y , zω ∈ R
m
+ , θω ∈ R

+ ∀ ω ∈ Ω.

which yields the exactly the same MP as in (10) - (17). �

We summarize the main contribution of our TBDS method, from a Benders decomposition per-

spective, in Theorem 1.

Theorem 1. Let ZMIP and ZRN
MP be the optimal objective value of problem (6) - (9) and the optimal

objective value of MP with a finite number of proposed optimality and feasibility cuts, respectively,

then, ZMIP =ZRN
MP .

Proof: The proof follows from Van Slyke and Wets (1969) and Proposition 1. Let ZRN ′
MP be the

optimal objective value of of MP ′ with a finite number of proposed optimality and feasibility cuts.

By Van Slyke and Wets (1969), we know ZMIP = ZRN ′
MP . It is shown that (with Proposition 1) ZRN ′

MP =

ZRN
MP . Hence, we can conclude ZMIP = ZRN

MP . �

3.2. Design of the scenario set ΩMP

Relatively complete continuous recourse in stochastic mixed-integer programs typically entails weak

bounds and many (superfluous) iterations of generating cuts as the MP loses all the information

with the second stage variables (Rahmaniani et al. 2017). To overcome this issue, we adopt and

generalize the idea of partial Benders decomposition (Crainic et al. 2021). In line with partial Benders

decomposition, we include second-stage constraints associated with a subset of scenarios ΩMP , via

constraints (11). However, partial Benders decomposition designs the set ΩMP using a row covering

strategy to eliminate many feasibility cuts. Instead, we determine a ‘representative’ scenario subset

ΩMP .

The representative scenarios in the master problem ΩMP = Ω1
MP ∪Ω2

MP comprise ‘actual’ scenarios

Ω1
MP ⊆ Ω and ‘artificial’ scenarios Ω2

MP . Let Ω2
MP be a set of artificial scenarios created by convex

combinations of scenarios in ΩMP . We first detail the Ω1
MP selection. We cluster the scenarios following

Definition 1, and select the representative scenarios of each cluster for Ω1
MP .
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Definition 1. Let K be the number of clusters. The set Ω1
MP = {r1, . . . , rK} is constructed as

follows:

Step 1. Compute the opportunity-cost matrix V = (Vij)|Ω|×|Ω| where

Vij = SP2((x̂i, ŷi), ξ(ωj)) ∀(i, j) ∈ Ω

where (x̂i, ŷi) is the optimal solution of the one-scenario subproblem:

(x̂i, ŷi) ∈ arg min
x,y

SP2(x, y, ξ(ωi)) ∀i∈ Ω

Step 2. Find a partition of the set Ω into K clusters C1, . . . ,CK and their representative scenarios

r1 ∈C1, . . . , rK ∈CK such that

rk = arg min

∣

∣

∣

∣

∣

∣

Vrk,rk
−

1

|Ck|

∑

j∈Ck

Vrk,j

∣

∣

∣

∣

∣

∣

(25)

By minimizing the clustering error (equation (25)), we create clusters that best fit the average

cost function of all clusters. Appendix A gives an equivalent mixed-integer program to solve equation

(25). The reader is referred to Keutchayan, Ortmann, and Rei (2023) for more insight.

The above procedure adds K so-called representative scenarios into MP by means of constraints

(11). This reduces the root node optimality gap by improving the linear relaxation of the master

problem. The value of K should be carefully selected, however. A too large K leads to overpopulating

the master problem, increasing the solution time. We provide a detailed analysis of the value of K

in Section 5.

Additionally, we construct artificial scenarios Ω2
MP based on scenarios in Ω. Adding artificial sce-

narios into the master program influences the first-stage variables, improving the lower bound. To

generate artificial scenarios ω̄ ∈ Ω2
MP , we use convex combinations of scenarios in Ω and add the

constraints (11) to MP.

Definition 2. Let αω̄
ω ≥ 0, for ω ∈ Ω such that

∑

ω∈Ωα
ω̄
ω = 1. Then, the realization of random vector

for artificially generated scenario ω̄ ∈ Ω2
MP is defined as

Wω̄ =
∑

ω∈Ω

αω̄
ωWω, Tω̄ =

∑

ω∈Ω

αω̄
ωTω, Sω̄ =

∑

ω∈Ω

αω̄
ωSω.

We can guarantee the same objective value of the problem (6) - (9) with the inclusion of artificial

scenarios by defining the second stage decision variables for an artificial scenario as yω̄ =
∑

ω∈Ωα
ω̄
ωyω.

Convex combinations of scenarios, as suggested by Crainic et al. (2021), can create dominance rela-

tionships among scenarios, resulting in fewer feasibility cuts and a considerable reduction in the

optimality gap upon termination. This technique also improves the number of instances that can

be solved optimally within the time limit. Overall, including a set of scenarios ΩMP in the master

problem can strengthen it and lead to faster convergence.
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Algorithm 1 Two-Step Benders Decomposition within Branch and Cut Method

1: Input: SP1(·),{SP2(·, ω)}ω∈ΩSP

2: Output: (x∗, y∗,Θ)
3: Initialize Θ = −∞, θω = −∞ ∀ω ∈ ΩSP ,
4: Start a callback procedure
5: Callback:
6: if x∗ /∈ X then

7: if SP1(x∗) is a finite number then

8: Generate aggregated scenario optimality cut (20), add to the MP
9: Solve SP2 and generate strengthened scenario optimality cut (23), add to the MP

10: else

11: Generate the feasibility cut (19)
12: end if

13: else

14: Solve SP1(x∗) and get the solution y∗

15: if Θ∗ <SP1(x∗) then

16: Generate aggregated scenario optimality cut (20), add to the MP
17: for ω ∈ ΩSP do

18: Solve SP2(x∗, y∗, ω)
19: if θ∗

ω <SP2(x∗, y∗, ω) then

20: Generate the scenario optimality cut (21), add to the MP
21: end if

22: end for

23: else

24: The solution (x∗, y∗) is optimal
25: end if

26: end if

3.3. The TBDS Algorithm

We provide an efficient algorithmic implementation of TBDS along the lines of branch-and-cut to

obtain an efficient algorithm for solving two-stage stochastic mixed-integer programs with continuous

recourse. The TBDS algorithm dynamically adds optimality and feasibility cuts during the branch-

and-bound procedure. Note the branch-and-bound procedure ensures integrality of the x variables,

so that x∈ X .

An algorithmic description of TBDS is provided in Algorithm 1. We distinct two cases for any

arbitrary branch-and-bound node. First, if the associated solution x is fractional (line 6), we create

a feasibility cut (19) in case SP1 is infeasible (line 11). If the associated solution is feasible (lines

8, 9), however, we generate the strengthened optimality cuts (23) as these cuts are tighter than

the optimality cuts (21) for fractional first-stage solutions (Rahmaniani et al. 2020). Second, if the

associated solution x is integer, we generate aggregated optimality cuts (20) and scenario optimality

cuts (21). Note that strengthening the scenario optimality cuts for integer solutions is not useful

since the optimality cuts (23) are not tight as the optimality cuts (21) (Rahmaniani et al. 2020). Due

to our relatively complete recourse assumption, we do not need feasibility cuts at integer solutions.
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Finally, we like to stress that any other row generation procedure on feasibility on X and Y can

easily be included in this procedure.

4. Example application of TBDS

We apply TBDS to the Time Window Assignment Traveling Salesperson Problem with Stochastic

Travel Times (TWATSP-ST). It concerns the a-priori joint optimization of a vehicle route and the

assignment of time windows to the customers, in the presence of travel time uncertainty, initially

introduced by Jabali et al. (2015). Recently, Vareias, Repoussis, and Tarantilis (2019) extend the

model of Jabali et al. (2015) and develop a two-stage heuristic to solve the problem. To this date,

only heuristic approaches appeared in the literature for the TWATSP-ST. We will apply TBDS to the

TWATSP-ST to obtain the first exact solutions. In the subsequent parts of this section we provide

a two-stage stochastic programming formulations with binary and continuous first-stage variables

and continuous second-stage variables for the TWATSP-ST, and show explicit formulations for the

optimality and feasibility cuts when applying TBDS to the TWATSP-ST.

The TWATSP-ST is defined on a graph G= (V,A), where V = {0, . . . , n} is the set of nodes and

A := {(i, j) ∈ V × V : i 6= j} is the set of arcs. Node 0 acts as the depot at which the vehicle starts

its tour and all other nodes represent customers. The vehicle has a shift duration of length T . Each

arc (i, j) ∈ A has a known distance dij ≥ 0. Each customer i ∈ V + := V \ {0} faces a deterministic

service time si ≥ 0. We assume travel times over the arcs are stochastic with known distribution.

Let ξ = {tij}(i,j)∈A represent the stochastic travel time vector on a scenario sample space Ω. ξ(ω) =

{tij(ω)}(i,j)∈A denotes the particular realization of the travel time over arc (i, j) ∈A in a scenario ω ∈

Ω. In this way, we intrinsically cater for delay propagation, unlike Vareias, Repoussis, and Tarantilis

(2019).

In this context, the TWATSP-ST makes two inter-dependent, a priori decisions: i) A vehicle route

visiting all customers in V +, starting and ending at the depot, and ii) a time window assignment

[tsi , t
e
i ] for each customer i∈ V +. The objective of the TWATSP-ST is to minimize a weighted sum of

expected earliness and lateness at the assigned time windows, the width of the assigned time window,

the expected shift overtime of the vehicle, and the total distance the vehicle travels.

We encode the routing decision with variables xij ∈ {0,1} for all (i, j) ∈A. Together with the time

window assignment variables tsi , t
e
i ≥ 0, these form the first-stage decisions in the TWATSP-ST. After

realization of uncertainty, for each scenario ω ∈ Ω, we can determine for each customer i ∈ V + the

departure time wi (ω), the earliness ei (ω) and the lateness li (ω) relative to the assigned time window

[tsi , t
e
i ], and the shift overtime o (ω) relative to the shift duration length T .
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Then, we formulate the TWATSP-ST as the following two-stage stochastic mixed-integer program

with continuous recourse.

min
∑

i∈V

∑

j∈V \{i}

dijxij +
∑

j∈V +

ϕ (tei − tsi ) +
∑

ω∈Ω

p(ω)Q(x, ts, te, ω) (26)

s.t.
∑

i∈V \{j}

xij =
∑

i∈V \{j}

xji = 1 ∀j ∈ V, (27)

xii = 0 ∀i∈ V, (28)
∑

i∈S

∑

j /∈S

xij ≥ 1 S ⊆ V,1 ≤ |S| ≤ |V +|, (29)

tei − tsi ≥ si ∀i∈ V +, (30)

xij ∈ {0,1} ∀i∈ V, j ∈ V, (31)

tei , t
s
i ∈R+ ∀i∈ V +. (32)

Here, ϕ ≥ 0 is an exogenously set weight factor. Constraints (27) and (28) ensure that the vehicle

visits each customer exactly once. Constraints (29) eliminate sub-tours, and constraints (30) ensure

that the time window assignment respects the service time at each customer.

The recourse function Q(x, ts, te, ω), as part of the Objective (26), gives the value of the expected

cost of the incurred earliness and lateness cost associated with the time window assignment and the

expected shift overtime cost.

Q(x, ts, te, ω) := min
∑

j∈V +

φ (ej (ω) + lj (ω)) +ψo (ω) (33)

s.t. wj (ω) ≥wi (ω) + tij (ω) + sj − (1 −xij)M ∀i∈ V, j ∈ V, (34)

ej (ω) ≥wi (ω) + tij (ω) − tsi − (1 −xij)M ∀i∈ V, j ∈ V, (35)

lj (ω) ≥wi (ω) + tij (ω) + sj − tei − (1 −xij)M ∀i∈ V, j ∈ V, (36)

o (ω) ≥wi (ω) + ti0 (ω) −T ∀i∈ V +, (37)

w0 (ω) = t0, (38)

wj (ω) , ej (ω) , lj (ω) ∈ R+ ∀j ∈ V +, (39)

o (ω) ∈R+. (40)

Here, ψ and φ are weight factors for the earliness and lateness concerning the time window assign-

ment and the overtime of the vehicle, respectively. The objective function of the second-stage problem

(33) is a function of first-stage variables (x, ts, ts) and a realization (or a scenario) of ξ(ω). Constraints

(34) - (37) determine departure time, earliness, lateness, and overtime for each scenario. We set M

in (34) - (36) equal to the longest total travel time among all scenarios. We require tours to start
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from the depot at a predetermined time t0 (Constraints (38)). Constraints (31), (32), (39) and (40)

define the variable domain.

Model (26) - (40) is a two-stage stochastic mixed-integer program with continuous recourse. We

define the master problem of TBDS and the associated cuts in the remainder of this section.

4.1. Master Program

As stated in Section 3, our TBDS method consists of a Master Program (MP) and two (sets) of

subproblems SP1 and SP2. We refer the reader to Appendices B and C for the formulation of SP1

and SP2. The MP for the TWATSP-ST is given by:

(MP ) : min
∑

j∈V

∑

i∈V \{j}

dijxij + Θ +
∑

ω∈Ω1
MP

p(ω)





∑

j∈V +

φ (ej (ω) + lj (ω)) +ψo (ω)



 (41)

s.t.
∑

i∈V \{j}

xij =
∑

i∈V \{j}

xji = 1 ∀j ∈ V, (42)

xii = 0 ∀i∈ V, (43)
∑

i∈S

∑

j /∈S

xij ≥ 1 S ⊆ V,1 ≤ |S| ≤ |V +|, (44)

tei − tsi ≥ si ∀i∈ V +, (45)

Θ ≥
∑

j∈V +

ϕ (tei − tsi ) +
∑

ω∈ΩSP

p(ω)θ(ω), (46)

Second-stage Constraints (ΩMP ), (47)

(Aggregated Optimality Cut (ΩSP ))i , ∀i∈ I (48)

(Scenario Optimality Cut (ΩSP ))j , ∀j ∈ J (49)

(Feasibility Cut (ΩSP ))k , ∀k ∈K (50)

xij ∈ {0,1} ∀i∈ V, j ∈ V, (51)

tei , t
s
i ∈R+ ∀i∈ V +, (52)

ei (ω) , li (ω) ∈ R+ ∀i∈ V +, ω ∈ Ω1
MP , (53)

o (ω) ∈R+ ∀ω ∈ Ω1
MP , (54)

Θ ∈ R, (55)

θ(ω) ∈ R ∀ ω ∈ ΩSP . (56)

Here Θ (and θ(ω)) provide a lower bound on the expected second-stage cost and the time window

assignment cost. Constraints (42)-(45), (51)-(52) are the first-stage constraints. The scenario set

ΩSP in constraint (47) is formed as detailed in Section 3.2. For the scenarios ω ∈ ΩMP , second-

stage constraints (34)-(40) are included in the MP. Constraint (46) is the Subproblem-Connectivity

Constraint. The optimality and feasibility cuts (48)-(50) are made specific in the next subsection.
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4.2. Cuts

In line with Section 3, we define a subproblem SP1 taking as input the binary first-stage decisions,

i.e., the routing decision in the TWATSP-ST. The second series of subproblems SP2 for each scenario

ω ∈ ΩSP are then obtained via the two-step decomposition as outlined in Section 3, i.e., as input we

take the binary first-stage decisions and solution of the time window assignment variables after solving

SP1. For completeness, we provide the formulation of SP1 for the TWATSP-ST in Appendix B.

Aggregated Optimality Cut. For a given solution x∗ of MP that is feasible for SP1, let

(λ1∗, λ2∗, λ3∗, µ∗, ν∗, π∗) indicate the values of dual multipliers in SP1; then,

Θ ≥
∑

ω∈ΩSP

∑

i,j∈V

((

λ1∗
ij (ω) +λ3∗

ij (ω)
)

(tij (ω) + sj − (1 −xij)M ) +λ2∗
ij (ω) (tij (ω) − (1 −xij)M )

)

+
∑

ω∈ΩSP

∑

i∈V +

(π∗ (ω) t0 +µ∗
i (ω) (ti0 (ω) −T )) +

∑

i∈V +

ν∗
i si

is the Aggregated Optimality Cut for MP.

For the second step of our decomposition, we formulate SP2 as detailed in Section 3.1. It takes

the routing decisions from MP and time window assignments from SP1 as input. Recall SP2 is given

in Appendix C. Via the auxiliary decision variable θ(ω) we approximate the cost function of each

scenario ω ∈ ΩSP (or the objective function value of each SP2).

Feasibility Cuts. If the solution x∗ of MP is infeasible for SP1, we generate the feasibility cut

0 ≥ 1

T ǭ+ (x− z̄)Tλ∗

where ǭ and z̄ are the optimal values of the ǫ and z variables in the feasibility problem in Appendix D.

λ∗ is the value of the associated dual variable.

Scenario Optimality Cuts. For a given feasible solution (x∗, ts∗, te∗), for ω ∈ ΩSP , let

(z̄, q̄s, q̄e, ē, l̄, ō) be the optimal solution of SP2 and (β, λ, η) indicate the values of the dual multipliers

related to first-stage variables; then,

θ(ω) ≥
∑

j∈V +

(

φ
(

ēj (ω) + l̄j (ω)
)

+ψō (ω) +λj(t
s
i − q̄s

j ) + ηj(t
e
j − q̄e

j )
)

+
∑

i∈V

∑

j∈V

βij(xij − z̄ij) (57)

is the Scenario Optimality Cut for ω ∈ ΩSP for MP.

Strengthened Scenario Optimality Cuts. For a feasible fractional MP solution (x∗, ts∗, te∗),

we update the cut (57) by acquiring the following Lagrangian dual problem of SP2 with the objective

function

max
β,λ,η

min
∑

i∈V

∑

j∈V

β(x∗
ij − zij) +λi(t

s∗
i − qs

i ) + ηi(t
e∗
i − qe

i ) +
∑

j∈V +

φ (ej (ω) + lj (ω)) +ψo (ω) .
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Given (x∗, ts∗, te∗) and (β, λ, η), let (z̄, q̄s, q̄e, ē, l̄, ō) be the optimal solution of the Lagrangian dual

problem for ω ∈ ΩSP ; then,

θ(ω) ≥
∑

j∈V +

(

φ
(

ēj (ω) + l̄j (ω)
)

+ψō (ω) +λj(t
s
i − q̄s

j ) + ηj(t
e
j − q̄e

j )
)

+
∑

i∈V

∑

j∈V

βij(xij − z̄ij)

is a valid strengthened optimality cut for the MP.

5. Performance of TBDS

We show the performance of the Two-Step Benders Decomposition with Scenario Clustering (TBDS)

method by solving the Time Window Assignment Traveling Salesperson Problem with Stochastic

Travel Times (TWATSP-ST). We develop six variants of TBDS to assess and structurally benchmark

the two main novelties of TBDS: the guided selection of scenarios in the master problem and the

two-step decomposition of binary and linear first-stage variables. The six considered variants are:

1. BD uses strengthened optimality cuts and a standard decomposition over scenarios, leading to

Benders dual decomposition, as introduced by Rahmaniani et al. (2020).

2. TBD extends BD by including the decomposition over the integer and linear first-stage vari-

ables. This variant tests the impact of our two-step first-stage decomposition compared with Benders

dual decomposition.

3. BDP extends BD by including the first-stage constraints on the master problem of ran-

domly chosen scenarios and artificial scenarios. This variant combines partial Benders decomposition

(Crainic et al. 2021) with Benders dual decomposition.

4. TBDP extends BDP by including the two-step first-stage decomposition.

5. BDS extends BDP by including the guided selection of scenarios in the master program.

6. TBDS extends BDS by including the two-step first-stage decomposition. This is our TBDS

method as presented in Section 3.

We evaluate the performance of the variants on a new set of benchmark instances introduced in

Section 5.1. We carefully optimize the hyperparameters associated with the different variants, as

detailed in Section 5.2. To measure the effectiveness of the proposed variants, we first compare

the quality of the root node lower and upper bounds in Section 5.3. We continue by showcasing

the full performance of the variants in Section 5.4, the convergence behavior of our method by

conducting an overall branch-and-cut search and comparing the performance of the six variants for

benchmark purposes. Finally, we provide insights into the optimal solution structure and the value

of the stochastic solution. We derive managerial insights useful for practitioners in Section 5.5.
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5.1. Benchmark Instances

We adapt benchmark instances from the literature to our problem setting, generating 126 new bench-

mark instances. Specifically, we derive 56 instances with clustered customer locations based on single

vehicle routes from Solomon’s VRPTW-RC instances proposed by Potvin and Bengio (1996) and 70

instances from Gendreau et al. (1998), which include not only the customer locations but also the

associated service times. We refer to these as rc and n w instances, respectively. The end of the

depot’s time window defines the shift length. All instances and associated solutions are included as

supplementary material to the submission.

To balance the four penalty terms in the objective function and make them directly comparable

concerning the routing cost for most problem instances, we used penalty weights of φ= 3 and ϕ=

1 to penalize expected delay/earliness and time window width at customer i ∈ V +, respectively.

Comparably to Jabali et al. (2015), we set the penalty for expected shift overtime to ψ= 4.

We conduct a Sample Average Approximation analysis to determine the number of scenarios to

correctly represent uncertainty, considering our routing solutions’ stability as the number of customers

in the instances increases. This results in 100 scenarios, which we use throughout all experiments.

We follow a similar approach for generating random travel times as Jabali et al. (2015) and

Vareias, Repoussis, and Tarantilis (2019). For each scenario, we determine the travel time tij for arc

(i, j) ∈A by adding a random disruption parameter δij to the Euclidean distance dij . To model real-

istic travel times and disruptions, we assume a Gamma-distributed disruption parameter with shape

k and scale θij depending on the distance and a coefficient of variation cov = 0.25. We define η = 0.35

as a congestion level, representing the expected increase in travel time after a disruption occurs, i.e.,

E[δij] = ηdij . We assume δij ∼G(k, θij), resulting in

E[δij] = kθij = ηdij ,

V ar(δij) = kθ2
ij .

Here, parameters k and θij are set according to

k=
1

cov2
, θij = ηdijcov

2

5.2. Parameter Settings and Implementation Details

The master problem (41) - (52) contains both a set of selected scenarios from Ω and some artificial

scenarios created based on Ω. Section 3.2 explains in detail how to select scenarios and create artificial

scenarios. The performance of our method depends on the number of scenarios added to the master

program. By varying the fraction of scenarios added to the master program between 5%, 10% and

15%, we evaluate the performance of the methods BDP, TBDP, BDS, and TBDS under different
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scenario selection strategies. The results presented for the aforementioned methods are obtained by

selecting the best combination of scenario levels, corresponding to the highest number of solved

instances in each method.

We embed all methods in a branch-and-cut framework. We only add Benders cuts (20) - (23) at

the root node and upon discovery of a possible incumbent solution. Subtour elimination constraints

are included dynamically. All algorithms are coded in Python 3.9.7 in combination with Gurobi 9.5.1.

The experiments are run on a virtual machine with 64 GB RAM under the Linux operating system,

which was sufficient for all experiments. All algorithms have a time limit of three hours.

5.3. Performance of TBDS at the Root Node

Table 1 and 2 compare lower bounds (LB), upper bounds (UB), and root node gaps of the six TBDS

variants (BD, TBD, BDP, TBDP, BDS, TBDS) for different instance sizes (10, 13, 15, 18, 20, 23,

25), listed in the first column. The number of instances solved with different customer numbers and

the average lower and upper bound value for both benchmark sets is reported in Tables 1 and 2. The

Root Node Gap is computed as ((UB − LB)/LB) × 100) and gives the relative difference between

lower and upper bound at the root node. The lower and upper bound information is obtained as

the root node within the evaluation of the full branch-and-cut algorithm after the first branching

decision, which partly depends on the procedures embedded within Gurobi.

Comparing the results in Tables 1 and 2, a few observations stand out. First, comparing TBD to

BD, the upper bounds in TBD decrease substantially, with a reduction of 83.1% and 90.9% compared

to BD for the n w and rc instances, respectively.

Second, the concept of partial Benders decomposition helps to tighten the lower bound at the

root node, i.e., comparing BDP and TBDP with BD and TBD. It alleviates the primal inefficiencies

with redundant solutions in early iterations of the BD and TBD methods. The addition of any

scenarios improves the lower and upper bound on average by 19.8% and 72.5% over the n w instances,

respectively. For the rc instances, the lower bound improves on average by 12.3% with the addition

of any scenarios. Similarly, the upper bound decrease by 46.6% for the rc instances.

We observe the benefit of choosing scenarios with clustering as it tightens the lower bound on

average by 32.6% for n w instances and 5.6% for rc instances comparing the BDS and TBDS

methods to the BDP and TBDP methods. Comparing TBDP with TBDS, we see that in TBDS, on

average, the lower bound increases by 22.5%, and the upper bound decreases by 35.5%.

As the number of customers increases in both instances, the benefits gained from scenario clustering

and the two-step decomposition become more pronounced, although the root gap remains high. In

the next section, we will analyze the impact of these findings on computational effort within the full

branch-and-cut procedure.
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Table 1 Average Root Node Lower and Upper Bounds of n w Instances for the TBDS Variants

# Customers Root Node BD TBD BDP TBDP BDS TBDS

10
Lower Bound 195.30 200.95 228.22 245.72 234.15 240.68
Upper Bound 5586.13 252.78 343.83 278.73 288.98 259.27
Root Node Gap (%) 96.50 20.50 33.62 11.84 18.97 7.17

13
Lower Bound 225.89 237.74 245.15 243.45 296.73 311.16
Upper Bound 9914.30 352.71 2451.89 402.81 381.90 345.47
Root Node Gap (%) 97.72 32.60 90.00 39.56 22.30 9.93

15
Lower Bound 231.87 264.84 291.49 272.59 331.45 332.53
Upper Bound 13446.87 538.15 5258.36 1172.17 461.39 444.73
Root Node Gap (%) 98.28 50.79 94.46 76.74 28.16 25.23

18
Lower Bound 254.25 256.70 304.22 313.66 387.24 365.03
Upper Bound 18862.60 1932.04 1397.69 1770.36 1439.92 1019.40
Root Node Gap (%) 98.65 86.71 78.23 82.28 73.11 64.19

20
Lower Bound 274.07 316.01 415.77 321.01 383.73 383.20
Upper Bound 23932.42 3041.61 2614.86 2017.36 1856.67 1440.71
Root Node Gap (%) 98.85 89.61 84.10 84.09 79.33 73.40

23
Lower Bound 291.82 353.40 409.85 346.43 689.14 694.77
Upper Bound 41065.30 7002.24 3498.46 6933.25 3793.50 1949.43
Root Node Gap (%) 99.29 94.95 88.28 95.00 81.83 64.36

25
Lower Bound 313.63 391.14 529.54 392.09 673.76 721.30
Upper Bound 43749.30 13324.17 20787.50 1452.33 5733.92 2564.44
Root Node Gap (%) 99.28 97.06 97.45 73.00 88.25 71.87

Table 2 Average Root Node Lower and Upper Bounds of rc Instances for All TBDS Variants

# Customers Root Node BD TBD BDP TBDP BDS TBDS

10
Lower Bound 363.35 363.35 369.38 391.62 399.29 401.83
Upper Bound 5988.77 409.21 6625.27 461.50 450.11 458.53
Root Node Gap (%) 93.93 11.21 94.42 15.14 11.01 12.37

13
Lower Bound 390.74 362.55 450.48 462.54 487.65 482.45
Upper Bound 8818.20 420.75 11157.97 562.48 617.31 576.07
Root Node Gap (%) 95.57 13.83 95.96 17.77 21.00 16.25

15
Lower Bound 423.23 438.95 476.32 513.39 528.96 523.52
Upper Bound 12160.68 509.61 13447.64 605.66 654.87 650.58
Root Node Gap (%) 96.52 13.87 96.46 15.23 19.23 19.53

18
Lower Bound 506.59 528.65 536.37 587.94 600.11 601.10
Upper Bound 19988.22 681.00 21811.96 903.21 778.95 715.95
Root Node Gap (%) 97.47 22.37 97.54 34.91 22.96 16.04

20
Lower Bound 538.36 582.28 651.14 644.84 674.16 672.40
Upper Bound 22563.14 1832.02 3747.24 1081.68 1078.71 1347.28
Root Node Gap (%) 97.61 68.22 82.62 40.39 37.50 50.09

23
Lower Bound 595.36 626.84 628.14 735.01 724.77 720.46
Upper Bound 32158.67 2978.55 1765.22 2174.53 2220.65 2756.16
Root Node Gap (%) 98.15 78.95 64.42 66.20 67.36 73.86

25
Lower Bound 628.92 679.91 710.37 734.75 764.11 755.07
Upper Bound 37700.76 5879.10 10538.78 6334.71 31067.64 6091.77
Root Node Gap (%) 98.33 88.44 93.26 88.40 97.54 87.61
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5.4. Overall Performance of TBDS

We continue by analyzing the overall performance of the six TBDS variants on our benchmark

instances. Our proposed solution approach, TBDS, solves up to 25 customers in both sets of bench-

mark instances. Looking to the total number of solved instances within the time limit displayed in

Figure 1, it is evident that the variants with two-step decomposition outperform the variants without

two-step decomposition. Specifically, TBDS solved 90.0% and 85.7% of instances in both benchmark

sets to optimality, while BDS only solved 28.6% and 26.8% of instances. In contrast, BD failed to

solve any instance, and TBD only solved up to 5.7% and 3.6% of all instances. The BDP and TBDP

variants were able to solve between 21.4% and 48.3% of all benchmark instances. The significant

increase in performance of TBDS can be attributed to the use of smart clustering and the two-step

decomposition over continuous and binary first-stage variables.

Gurobi BD TBD BDP TBDP BDS TBDS

0

20

40

60

80

100

n w rc

Figure 1 Percentage of Instances Solved Within 3 hours

Tables 3 and 4 provide detailed results for each benchmark set. Noting that the BD variant fails

to solve any instance within the 3 hours time limit, the computational time of solved instances in

the variants without the two-step decomposition ranges between 127.8 minutes and 149.5 minutes.

We see a clear decrease in computational time ranging between 73.2 and 99.7 minutes in the variants

with the two-step decomposition. Comparing BD, BDP and BDS, the average optimality gap of

non-solved instances decreases significantly. Among variants without two-step decomposition, the

average optimality gap decreases from 58.5% to 36.6% to 15.8%. Similarly, with the variants with

two-step decomposition, we see that the average optimality gap decreases from 30.5% to 5.8%. The

results clearly show that our TBDS outperforms the state-of-the-art, as it solves more instances to
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Table 3 Performance of the Six TBDS variants on n w instances

# Customers BD TBD BDP TBDP BDS TBDS

10
Solved (#/10) 0 4 5 10 5 10
Time to Optimality - 30.05 34.86 20.97 108.80 3.27
Opt. Gap Unsolved 26.44 0.37 1.64 - 1.12 -

13
Solved (#/10) 0 0 7 10 7 10
Time to Optimality - - 85.93 62.65 109.06 29.69
Opt. Gap Unsolved 27.76 1.27 20.43 0.00 3.12 -

15
Solved (#/10) 0 0 2 7 2 10
Time to Optimality - - 152.47 93.20 170.13 36.49
Opt. Gap Unsolved 45.71 2.61 20.18 0.081 7.54 0.00

18
Solved (#/10) 0 0 1 3 4 10
Time to Optimality - - 164.17 159.46 116.85 70.85
Opt. Gap Unsolved 77.30 14.64 32.83 16.88 15.13 0.00

20
Solved (#/10) 0 0 0 2 2 10
Time to Optimality - - - 131.40 127.47 99.22
Opt. Gap Unsolved 81.04 45.40 44.54 38.17 35.33 0.00

23
Solved (#/10) 0 0 0 0 0 8
Time to Optimality - - - - - 135.25
Opt. Gap Unsolved 92.45 58.56 60.09 24.72 26.13 3.39

25
Solved (#/10) 0 0 0 0 0 5
Time to Optimality - - - - - 97.71
Opt. Gap Unsolved 97.50 75.38 73.59 70.96 37.74 11.67

Table 4 Performance of the Six TBDS variants on rc instances

# Customers BD TBD BDP TBDP BDS TBDS

10
Solved (#/8) 0 2 6 8 6 8
Time to Optimality - 149.79 135.92 31.25 165.19 6.33
Opt. Gap Unsolved 13.32 7.19 13.15 - 7.36 -

13
Solved (#/8) 0 0 6 8 6 8
Time to Optimality - - 104.88 82.81 179.21 25.30
Opt. Gap Unsolved 27.25 8.20 16.05 - 7.23 -

15
Solved (#/8) 0 0 2 8 3 8
Time to Optimality - - 167.48 128.15 173.37 38.44
Opt. Gap Unsolved 20.03 4.62 27.57 - 7.54 -

18
Solved (#/8) 0 0 1 1 0 8
Time to Optimality - - 176.52 155.62 - 77.99
Opt. Gap Unsolved 56.42 42.28 20.17 3.12 8.10 -

20
Solved (#/8) 0 0 0 2 0 8
Time to Optimality - - - 131.27 - 93.37
Opt. Gap Unsolved 65.25 21.67 47.46 12.89 7.82 -

23
Solved (#/8) 0 0 0 0 0 5
Time to Optimality - - - - - 139.62
Opt. Gap Unsolved 92.20 64.27 66.12 11.06 14.46 2.27

25
Solved (#/8) 0 0 0 0 0 3
Time to Optimality - - - - - 170.71
Opt. Gap Unsolved 95.61 80.87 67.89 12.12 43.19 6.02
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optimality and obtains smaller optimality gaps for the instances unable to solve optimally. Essential

is the combination of the two main ideas of TBDS, i.e., the two-step decomposition and the guided

selection of representative scenarios.

5.5. Managerial Insights

This section assesses the value of integrating time window assignment and routing decisions and

provides insights into the structure of the optimal stochastic solutions. To do so, we fix different

routing decisions and time window assignments, as well as both first-stage variables, and analyze

the resulting solution costs. Further, we conduct analysis on the value of stochastic solution. Our

insights quantify the benefits of optimizing routing and time window assignments simultaneously

(Insight 1), assigning customer-specific time windows (Insight 2) and considering stochasticity in

optimizing routing and time window assignment (Insights 3 and 4).

Insight 1. Simultaneously optimizing time windows and routing decreases the expected time window

exceedance by 73.0% and reduces the width of assigned time windows by 6.9% while routing costs only

increase slightly (5.2%).

Tables 5 and 6 summarize the routing decisions and associated costs for various instance sizes

(10, 13, 15, 18, 20), considering three solution types. The Mean Value Problem (MVP) solution is

obtained by optimizing both routing and time window assignment assuming travel times follow their

expectation. The routing solution obtained is then fixed and used as input in our model subject to

all scenarios. The Traveling Salesperson Solution (TSP) simply fixes the routing according to the

shortest tour and uses this as input in our model subject to all scenarios. The Stochastic Solution

(SS) is the optimal solution to the TWATSP-ST as defined before. The column Routing Cost gives

the resulting routing cost, the column TWA Cost presents the time window assignment cost, and

column Recourse Cost the second-stage costs.

Our analysis reveals that even small variations in routing decisions yield significant reductions

in both time window width and recourse costs. Moreover, the TSP solution performs poorly in

the second stage, particularly as the number of customers increases. That suggests that wider time

window assignments do not necessarily result in better performance in the second stage. With more

customers, the stochastic solution’s cost advantage over MVP and TSP solutions becomes more

pronounced.

Insight 2. The flexibility to vary the time window width among the customers in the tour decreases

the total time window width by 18.7% and decreases total cost by 7.8% on average. 67.2% of customers

receive narrower time windows compared to assigning only fixed-width ones.
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Table 5 Analysis of different routing decisions in n w instances

# Customers Solution Type Routing Cost TWA Cost Recourse Cost Total Cost

10
MVP 151.10 75.17 39.00 265.28
SS 153.37 58.98 33.94 246.28
TSP 151.10 74.38 38.40 263.88

13
MVP 171.78 100.93 57.42 330.12
SS 186.68 78.10 49.94 314.72
TSP 171.47 99.82 90.03 361.32

15
MVP 177.44 114.92 62.82 355.18
SS 183.66 92.69 59.14 335.49
TSP 175.73 118.85 299.31 593.88

18
MVP 199.14 141.72 76.22 417.08
SS 212.95 114.36 70.80 398.11
TSP 191.29 132.28 753.99 1077.56

20
MVP 197.03 152.48 82.25 431.76
SS 205.33 130.25 83.91 419.49
TSP 194.27 149.18 223.85 567.30

Table 6 Analysis of different routing decisions in rc instances

# Customers Solution Type Routing Cost TWA Cost Recourse Cost Total Cost

10
MVP 167.35 213.34 28.53 409.22
SS 170.23 209.96 27.72 407.91
TSP 167.35 216.58 30.53 414.56

13
MVP 181.80 284.79 51.26 517.85
SS 192.99 272.80 37.63 503.43
TSP 181.80 283.60 48.79 514.18

15
MVP 191.34 314.89 63.47 569.70
SS 199.67 302.81 45.52 548.01
TSP 191.34 310.31 56.45 558.10

18
MVP 208.51 366.57 76.53 651.62
SS 216.10 354.20 56.00 626.29
TSP 208.11 366.04 110.54 684.69

20
MVP 220.80 411.07 79.33 711.20
SS 225.48 397.64 70.38 693.50
TSP 218.28 410.06 332.28 960.62

Table 7 shows that for small instances with 10 to 13 customers, we compare fixed time window widths

(called FTWAS) with the stochastic solution. The FTWAS policy fixes the time window width to the

mean of the time window assignments in the stochastic solution. The associated costs are reported

in Table 7. Customers receive at most 11.7% wider time windows and at least 7.3% narrower time

windows than the fixed time windows. The results highlight the importance of assigning time windows

individually rather than providing the same interval for every customer.
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Table 7 Analysis of fixed time window assignment

Solution Type Routing Cost TWA Cost Recourse Cost Total Cost

n w
SS 155.55 66.08 36.52 258.16
FTWAS 156.13 74.95 33.60 264.68

rc
SS 184.25 215.61 30.46 430.33
FTWAS 184.36 271.52 26.83 482.72

Insight 3. Incorporating travel time uncertainty into the optimization of routing and time window

assignments decreases costs by 5.7%. This benefit stems from improving on-time delivery by 51.8%

at the expense of a 3.3% increase in routing cost and 14.6% wider time windows.

Tables 8 and 9 show the routing, time window assignment, second-stage and total cost of expected

mean value problem (EMVP) solution and stochastic solution (SS) for different instances. The EMVP

is obtained by considering only a single scenario representing the expected travel times and afterwards

evaluating this solution on each of the scenarios. The difference between SS and EMVP gives the

value of the stochastic solution (VSS). Our results indicate that incorporating different travel time

scenarios into decision-making – through the use of SS – results in an average VSS of 8.1% and 4.3%

for n w and rc instances, respectively. Additionally, our analysis reveals that a slight increase in

routing cost and wider time window assignments leads to better performance in terms of on-time

delivery in the second stage.

Insight 4. Optimal routes often exhibit an alternating pattern in time window width and variance

of incoming arcs. As such, the optimal solution hedges for time window violations with buffer times

distributed throughout the route.

We further analyze the nature of routing and time window assignment solutions generated by

TBDS. We observe that optimal routes exhibit a zigzag pattern with high variations and large time

Table 8 Comparison of Expected Mean Value Problem (EMVP) solution with Stochastic solution (SS) in n w

instances

# Customers Math. Model Routing Cost TWA Cost Recourse Cost Total Cost

10
EMVP 151.10 50.00 71.05 272.15
SS 153.37 58.98 33.94 246.28

13
EMVP 171.78 65.00 102.45 339.22
SS 186.68 78.10 49.94 314.72

15
EMVP 177.44 75.00 113.08 365.52
SS 183.66 92.69 59.14 335.49

18
EMVP 199.14 90.00 141.23 430.37
SS 212.95 114.36 70.80 398.11

20
EMVP 197.03 100.00 148.29 445.33
SS 205.33 130.25 83.91 419.49
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Table 9 Comparison of Expected Mean Value Problem (EMVP) solution with Stochastic solution (SS) in rc

instances

# Customers Math. Model Routing Cost TWA Cost Recourse Cost Total Cost

10
EMVP 176.01 194.92 50.80 421.74
SS 170.23 209.96 27.72 407.91

13
EMVP 191.74 224.50 91.44 507.68
SS 192.99 272.80 37.63 503.43

15
EMVP 191.34 275.71 112.81 579.87
SS 199.67 302.81 45.52 548.01

18
EMVP 208.51 320.86 133.78 663.15
SS 216.10 354.20 56.00 626.29

20
EMVP 220.80 359.17 144.65 724.62
SS 225.48 397.64 70.38 693.50
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Figure 2 Travel time variance of optimal routing solutions
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Figure 3 Time window assignment solutions in rc instances
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windows alternating with smaller variations and smaller time windows. Figure 2 shows the variance

of the travel time of arcs within the optimal routing sequence for n w and rc instances with 18

customers. Similarly, Figure 3 provides the optimal width of the time windows. An orange line

highlights an example instance to illustrate the pattern more clearly. As expected, customers reached

using arcs with high variance receive wider time windows. As such, the model immediately hedges for

delays. The optimal solution combines risky and less risky choices. Like this, delays do not propagate

too severely through the route. Observing – or constructing and utilizing – these alternating patterns

is impossible with current heuristics, which ignore delay propagation. The time windows are more

evenly distributed in the nw instances than in the rc (see Figure 3), indicating a balance between

risky and non-risky customer choices. This pattern also explains Insights 1 and 2.

6. Conclusions

We present a new method called Two-Step Benders Decomposition with Scenario Clustering (TBDS)

for solving two-stage stochastic mixed-integer programs. Our method combines and generalizes

the recent advancements in Benders decomposition and scenario clustering techniques. Our TBDS

method introduces a novel two-step decomposition strategy for the binary and continuous first-stage

variables, resulting in improved continuous first-stage solutions while generating optimality cuts. This

two-step decomposition approach leads to high-quality initial first-stage solutions, effectively reduc-

ing unnecessary iterations that typically occur in current state-of-the-art Benders decomposition

approaches. Consequently, it enhances computational efficiency by facilitating faster convergence.

The second key contribution of TBDS is incorporating clustered scenarios into the master pro-

gram, which is, to the best of the authors’ knowledge, the first time that such scenario clustering

techniques and state-of-the-art Benders decomposition approaches are combined. By clustering the

scenarios, we improve the linear programming (LP) relaxation of the master problem, obtaining supe-

rior lower bounds in the early iterations. By combining these two essential elements (i.e., the two-step

decomposition and the scenario clustering), our method achieves consistently tighter bounds at the

root node and produces higher quality incumbent solutions compared to state-of-the-art approaches

in the extant literature, including Benders dual decomposition and partial Benders decomposition.

Specifically, these methods can be considered special cases of TBDS.

We use TBDS to solve the Time Window Assignment Problem with Stochastic Travel Times

(TWATSP-ST), a challenging combinatorial problem formulated as a two-stage stochastic mixed-

integer program with continuous recourse for which no efficient exact solution methods exist yet.

Extensive experimental results demonstrate the effectiveness of TBDS. Our method solves more

instances to optimality, and significantly better lower and upper bounds are obtained for the instances

not solved to optimality. In particular, TBDS achieves optimality for 87.9% of the instances in our
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benchmark set, surpassing other benchmark algorithms that can solve at most 47% of the instances.

This showcases the superior performance and efficiency of our TBDS method in handling TWATSP-

ST. Furthermore, our study reveals that the simultaneous optimization of time windows and routing

leads to a noteworthy 12.8% improvement in total costs while incurring only a minor increase in

routing costs. Allowing different time window lengths enables hedging against high variances encoun-

tered throughout the route. As a result, our method produces shorter routes with fewer time window

violations, contributing to the overall cost reduction.

In future studies, the alternating pattern of high and low variance arcs traveled, as observed in the

structure of the optimal solution, can serve as a foundation for developing efficient heuristics tailored

specifically for the TWATSP-ST. Additionally, evaluating our algorithm on extended versions of the

vehicle routing problem, such as the capacitated vehicle routing problem and the multi-depot vehicle

routing problem, can offer valuable insights into the versatility and applicability of our TBDS method

in diverse real-world scenarios.

From a methodological perspective, we envision that the problem-specific selection of represen-

tative scenarios in combination with Benders decomposition approaches can be the start of several

new research lines. For instance, using supervised learning to predict which scenarios to label as

representative based on instance-specific information such as vehicle information and customer loca-

tions seems promising. Especially for applications with limited information, it would be valuable

to research how well such predictions translate to slightly different settings. Alternatively, methods

other than those in TBDS can be developed and tested for generating representative scenarios.
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Paradiso R, Roberti R, Laganá D, Dullaert W, 2020 An exact solution framework for multitrip vehicle-routing

problems with time windows. Operations Research 68(1):180–198.

Pflug GC, Pichler A, 2015 Dynamic generation of scenario trees. Computational Optimization and Applica-

tions 62(3):641–668.

Potvin JY, Bengio S, 1996 The vehicle routing problem with time windows part ii: genetic search. INFORMS

Journal on Computing 8(2):165–172.

Rahmaniani R, Ahmed S, Crainic TG, Gendreau M, Rei W, 2020 The Benders dual decomposition method.

Operations Research 68(3):878–895.

Rahmaniani R, Crainic TG, Gendreau M, Rei W, 2017 The benders decomposition algorithm: A literature

review. European Journal of Operational Research 259(3):801–817.

Schiffer M, Schneider M, Walther G, Laporte G, 2019 Vehicle routing and location routing with intermediate

stops: A review. Transportation Science 53(2):319–343.

Slyke RMV, Wets R, 1969 L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM Journal on Applied Mathematics 17(4):638–663.

Spliet R, Dabia S, Van Woensel T, 2018 The time window assignment vehicle routing problem with time-

dependent travel times. Transportation Science 52(2):261–276.

Van Slyke RM, Wets R, 1969 L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM Journal on Applied Mathematics 17(4):638–663.

Vareias AD, Repoussis PP, Tarantilis CD, 2019 Assessing customer service reliability in route planning with

self-imposed time windows and stochastic travel times. Transportation Science 53(1):256–281.



Celik et al.: Two-Step Benders Decomposition

Article submitted to Operations Research; manuscript no. none 31

Wölck M, Meisel S, 2022 Branch-and-price approaches for real-time vehicle routing with picking, loading,

and soft time windows. INFORMS Journal on Computing 34(4):2192–2211.

Appendix A: Mixed-Integer Program for Minimizing the Clustering Error

min
1

|Ω|

∑

i∈Ω

ti (58)

s.t. tj ≥
∑

i∈Ω

σijVji −
∑

i∈Ω

σijVjj , ∀ j ∈ Ω, (59)

tj ≥
∑

i∈Ω

σijVjj −
∑

i∈Ω

σijVji, ∀ j ∈ Ω, (60)

σij ≤ uj , σjj = uj ∀(i, j) ∈ Ω × Ω, (61)
∑

j∈Ω

σij = 1,
∑

j∈Ω

uj =K ∀ i∈ Ω, (62)

σij ∈ {0,1}, uj ∈ {0,1}, ti ∈ R+ ∀(i, j) ∈ Ω × Ω. (63)

We define binary variable uj to determine if a scenario j ∈ Ω is picked as a cluster representative

and another binary variable σij to identify scenario i ∈ Ω if it is in the cluster with representative

scenario j ∈ Ω. Constraint (59)-(60) linearize the equation (25). Constraint (61) and (62) ensure that

we construct K non empty clusters that contains a representative scenario.

Appendix B: SP1 for the TWATSP-ST

For a feasible solution x∗, SP1 for TWATSP-ST is formulated as follows:

SP1(x∗) = min
∑

j∈V +

ϕ (tei − tsi ) +
∑

ω∈ΩSP

pω





∑

j∈V +

φ (ej (ω) + lj (ω)) +ψo (ω)





s.t. wj (ω) ≥wi (ω) + tij (ω) + sj − (1 −x∗
ij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP , [λ1]

ej (ω) ≥wi (ω) + tij (ω) − tsi − (1 −x∗
ij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP , [λ2]

lj (ω) ≥wi (ω) + tij (ω) + sj − tei − (1 −x∗
ij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP , [λ3]

o (ω) ≥wi (ω) + ti0 (ω) −T ∀i∈ V +, ω ∈ ΩSP , [µ]

tei − tsi ≥ si ∀i∈ V +, [ν]

w0 (ω) = t0 ∀ω ∈ ΩSP , [π]

tsi , t
e
i ∈ R+ ∀i∈ V +,

wi (ω) , ei (ω) , li (ω) ∈R+ ∀i∈ V,ω ∈ ΩSP ,

o (ω) ∈ R+ ∀ω ∈ ΩSP .

Let the letters next to each constraint in the SP1 be a dual variable associated with the corresponding

constraint.
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Appendix C: SP2 for the TWATSP-ST

We define the second set of subproblems SP2(x∗, ts∗, te∗, ω) for a given feasible solution (x∗, ts∗, te∗)

and ω ∈ ΩSP as follows

min
∑

j∈V +

φ (ej (ω) + lj (ω)) +ψo (ω)

s.t.
∑

i∈V \{j}

zij =
∑

i∈V \{j}

zji = 1 ∀j ∈ V,

zii = 0 ∀i∈ V,
∑

i∈S

∑

j /∈S

zij ≥ 1 S ⊆ V,1 ≤ |S| ≤ |V +|,

wj (ω) ≥wi (ω) + tij (ω) + sj − (1 − zij)M ∀i∈ V, j ∈ V,

ej (ω) ≥wi (ω) + tij (ω) − qs
i − (1 − zij)M ∀i∈ V, j ∈ V,

lj (ω) ≥wi (ω) + tij (ω) + sj − qe
i − (1 − zij)M ∀i∈ V, j ∈ V,

o (ω) ≥wi (ω) + ti0 (ω) −T ∀i∈ V +,

qe
i − qs

i ≥ si ∀i∈ V +,

w0 (ω) = t0,

zij = x∗
ij ∀i∈ V, j ∈ V, [β]

qs
i = ts∗

i ∀i∈ V +, [λ]

qe
i = te∗

i ∀i∈ V +, [η]

zij ∈R+ ∀i∈ V, j ∈ V,

qs
i , q

e
i ∈ R+ ∀i∈ V +,

wi (ω) , ei (ω) , li (ω) ∈R+ ∀i∈ V,

o (ω) ∈ R+.

Appendix D: Feasibility Problem For TWATSP-ST

For infeasible x∗ solution for SP1, we solve the following feasibility problem for ω ∈ ΩSP .

min 1

T (ǫ1 + ǫ2 + ǫ3)

s.t.
∑

i∈V \{j}

zij =
∑

i∈V \{j}

zji = 1 ∀j ∈ V,

zii = 0 ∀i∈ V,
∑

i∈S

∑

j /∈S

zij ≥ 1 S ⊆ V,1 ≤ |S| ≤ |V +|,

wj (ω) + ǫ1 ≥wi (ω) + tij (ω) + sj − (1 − zij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP ,

ej (ω) + ǫ2 ≥wi (ω) + tij (ω) − qs
i − (1 − zij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP ,
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lj (ω) + ǫ3 ≥wi (ω) + tij (ω) + sj − qe
i − (1 − zij)M ∀i∈ V, j ∈ V,ω ∈ ΩSP ,

o (ω) ≥wi (ω) + ti0 (ω) −T ∀i∈ V +, ω ∈ ΩSP ,

qe
i − qs

i ≥ si ∀i∈ V +,

w0 (ω) = t0 ∀ω ∈ ΩSP ,

zij = x∗
ij ∀i∈ V, j ∈ V, [λ]

qs
i = ts∗

i ∀i∈ V +,

qe
i = te∗

i ∀i∈ V +,

zij ∈R+ ∀i∈ V, j ∈ V,

qs
i , q

e
i ∈ R+ ∀i∈ V +,

wi (ω) , ei (ω) , li (ω) ∈R+ ∀i∈ V,ω ∈ ΩSP ,

o (ω) ∈R+.
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