9,959 research outputs found

    Towards Developing a Travel Time Forecasting Model for Location-Based Services: a Review

    Get PDF
    Travel time forecasting models have been studied intensively as a subject of Intelligent Transportation Systems (ITS), particularly in the topics of advanced traffic management systems (ATMS), advanced traveler information systems (ATIS), and commercial vehicle operations (CVO). While the concept of travel time forecasting is relatively simple, it involves a notably complicated task of implementing even a simple model. Thus, existing forecasting models are diverse in their original formulations, including mathematical optimizations, computer simulations, statistics, and artificial intelligence. A comprehensive literature review, therefore, would assist in formulating a more reliable travel time forecasting model. On the other hand, geographic information systems (GIS) technologies primarily provide the capability of spatial and network database management, as well as technology management. Thus, GIS could support travel time forecasting in various ways by providing useful functions to both the managers in transportation management and information centers (TMICs) and the external users. Thus, in developing a travel time forecasting model, GIS could play important roles in the management of real-time and historical traffic data, the integration of multiple subsystems, and the assistance of information management. The purpose of this paper is to review various models and technologies that have been used for developing a travel time forecasting model with geographic information systems (GIS) technologies. Reviewed forecasting models in this paper include historical profile approaches, time series models, nonparametric regression models, traffic simulations, dynamic traffic assignment models, and neural networks. The potential roles and functions of GIS in travel time forecasting are also discussed.

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Deep Learning with Long Short-Term Memory for Time Series Prediction

    Full text link
    Time series prediction can be generalized as a process that extracts useful information from historical records and then determines future values. Learning long-range dependencies that are embedded in time series is often an obstacle for most algorithms, whereas Long Short-Term Memory (LSTM) solutions, as a specific kind of scheme in deep learning, promise to effectively overcome the problem. In this article, we first give a brief introduction to the structure and forward propagation mechanism of the LSTM model. Then, aiming at reducing the considerable computing cost of LSTM, we put forward the Random Connectivity LSTM (RCLSTM) model and test it by predicting traffic and user mobility in telecommunication networks. Compared to LSTM, RCLSTM is formed via stochastic connectivity between neurons, which achieves a significant breakthrough in the architecture formation of neural networks. In this way, the RCLSTM model exhibits a certain level of sparsity, which leads to an appealing decrease in the computational complexity and makes the RCLSTM model become more applicable in latency-stringent application scenarios. In the field of telecommunication networks, the prediction of traffic series and mobility traces could directly benefit from this improvement as we further demonstrate that the prediction accuracy of RCLSTM is comparable to that of the conventional LSTM no matter how we change the number of training samples or the length of input sequences.Comment: 9 pages, 5 figures, 14 reference

    A NEURAL NETWORK BASED TRAFFIC-FLOW PREDICTION MODEL

    Get PDF
    Prediction of traffic-flow in Istanbul has been a great concern for planners of the city. Istanbul as being one of the most crowded cities in the Europe has a rural population of more than 10 million. The related transportation agencies ill Istanbul continuously collect data through many ways thanks to improvements in sensor technology and communication systems which allow to more closely monitor the condition of the city transportation system. Since monitoring alone cannot improve the safety or efficiency of the system, those agencies actively inform the drivers continuously through various media including television broadcasts, internet, and electronic display boards on many locations on the roads. Currently, the human expertise is employed to judge traffic-flow on the roads to inform the public. There is no reliance on past data and human experts give opinions only on the present condition without much idea on what will be the likely events in the next hours. Historical events such as school-timings, holidays and other periodic events cannot be utilized for judging the future traffic-flows. This paper makes a preliminary attempt to change scenario by using artificial neural networks (ANNs) to model the past historical data. It aims at the prediction of the traffic volume based on the historical data in each major junction in the city. ANNs have given very encouraging results with the suggested approach explained in the paper

    Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory

    Full text link
    Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-Term Memory (LSTM), one kind of Recurrent Neural Network (RNN) schemes, has attracted a lot of attentions due to its capability of processing the long-range dependency embedded in the sequential traffic data. However, LSTM has considerable computational cost, which can not be tolerated in tasks with stringent latency requirement. In this paper, we propose a deep learning model based on LSTM, called Random Connectivity LSTM (RCLSTM). Compared to the conventional LSTM, RCLSTM makes a notable breakthrough in the formation of neural network, which is that the neurons are connected in a stochastic manner rather than full connected. So, the RCLSTM, with certain intrinsic sparsity, have many neural connections absent (distinguished from the full connectivity) and which leads to the reduction of the parameters to be trained and the computational cost. We apply the RCLSTM to predict traffic and validate that the RCLSTM with even 35% neural connectivity still shows a satisfactory performance. When we gradually add training samples, the performance of RCLSTM becomes increasingly closer to the baseline LSTM. Moreover, for the input traffic sequences of enough length, the RCLSTM exhibits even superior prediction accuracy than the baseline LSTM.Comment: 6 pages, 9 figure

    Forecasting international bandwidth capacity using linear and ANN methods

    Get PDF
    An artificial neural network (ANN) can improve forecasts through pattern recognition of historical data. This article evaluates the reliability of ANN methods, as opposed to simple extrapolation techniques, to forecast Internet bandwidth index data that is bursty in nature. A simple feedforward ANN model is selected as a nonlinear alternative, as it is flexible enough to model complex linear or nonlinear relationships without any prior assumptions about the data generating process. These data are virtually white noise and provides a challenge to forecasters. Using standard forecast error statistics, the ANN and the simple exponential smoothing model provide modestly better forecasts than other extrapolation methodsForecasting; international bandwidth capacity
    • …
    corecore