6,479 research outputs found

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation

    Ramsey numbers and adiabatic quantum computing

    Full text link
    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n)R(m,n) with m,n3m,n\geq 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n)R(m,n). We show how the computation of R(m,n)R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5s75\leq s\leq 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.Comment: 4 pages, 1 table, no figures, published versio

    Almost-rainbow edge-colorings of some small subgraphs

    Full text link
    Let f(n,p,q)f(n,p,q) be the minimum number of colors necessary to color the edges of KnK_n so that every KpK_p is at least qq-colored. We improve current bounds on the {7/4}n-3,slightlyimprovingtheboundofAxenovich.WemakesmallimprovementsonboundsofErdo˝sandGyaˊrfaˊsbyshowing, slightly improving the bound of Axenovich. We make small improvements on bounds of Erd\H os and Gy\'arf\'as by showing {5/6}n+1\leq f(n,4,5)andforalleven and for all even n\not\equiv 1 \pmod 3,, f(n,4,5)\leq n-1.Foracompletebipartitegraph . For a complete bipartite graph G=K_{n,n},weshowanncolorconstructiontocolortheedgesof, we show an n-color construction to color the edges of Gsothatevery so that every C_4\subseteq G$ is colored by at least three colors. This improves the best known upper bound of M. Axenovich, Z. F\"uredi, and D. Mubayi.Comment: 13 page

    Quantum metrology with nonclassical states of atomic ensembles

    Full text link
    Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well developed techniques for trapping, controlling and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold and ultracold gases of neutral atoms. Moreover, atoms can couple strongly to external forces and light fields, which makes them ideal for ultra-precise sensing and time keeping. All these factors call for generating non-classical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.Comment: 76 pages, 40 figures, 1 table, 603 references. Some figures bitmapped at 300 dpi to reduce file siz
    corecore