22,483 research outputs found

    A new approach for transport network design and optimization

    Get PDF
    The solution of the transportation network optimization problem actually requires, in most cases, very intricate and powerful computer resources, so that it is not feasible to use classical algorithms. One promising way is to use stochastic search techniques. In this context, Genetic Algorithms (GAs) seem to be - among all the available methodologies- one of the most efficient methods able to approach transport network design and optimization. Particularly, this paper will focus the attention on the possibility of modelling and optimizing Public Bus Networks by means of GAs. In the proposed algorithm, the specific class of Cumulative GAs(CGAs) will be used for solving the first level of the network optimization problem, while a classical assignment model ,or alternatively a neural network approach ,will be adopted for the Fitness Function(FF) evaluation. CGAs will then be utilized in order to generate new populations of networks, which will be evaluated by means of a suitable software package. For each new solution some indicators will be calculated .A unique FF will be finally evaluated by means of a multicriteria method. Altough the research is still in a preliminary stage, the emerging first results concerning numerical cases show very good perspectives for this new approach. A test in real cases will also follow.

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Optimal channel allocation with dynamic power control in cellular networks

    Full text link
    Techniques for channel allocation in cellular networks have been an area of intense research interest for many years. An efficient channel allocation scheme can significantly reduce call-blocking and calldropping probabilities. Another important issue is to effectively manage the power requirements for communication. An efficient power control strategy leads to reduced power consumption and improved signal quality. In this paper, we present a novel integer linear program (ILP) formulation that jointly optimizes channel allocation and power control for incoming calls, based on the carrier-to-interference ratio (CIR). In our approach we use a hybrid channel assignment scheme, where an incoming call is admitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as well as that of the new call, will be above a specified value. Our formulation also guarantees that the overall power requirement for the selected channel will be minimized as much as possible and that no ongoing calls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49 cell environment with 70 channels to investigate the effect of different parameters such as the desired CIR. The results indicate that our approach leads to significant improvements over existing techniques.Comment: 11 page
    • …
    corecore