178 research outputs found

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Variational approximation of functionals defined on 1-dimensional connected sets: the planar case

    Full text link
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert-Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica-Mortola type energies proving a Γ\Gamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [11].Comment: 30 pages, 5 figure

    Constant distortion embeddings of Symmetric Diversities

    Full text link
    Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of finite metric spaces into L1L_1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1L_1 spaces. In the metric case, it is well known that an nn-point metric space can be embedded into L1L_1 with O(logn)\mathcal{O}(\log n) distortion. For diversities, the optimal distortion is unknown. Here, we establish the surprising result that symmetric diversities, those in which the diversity (value) assigned to a set depends only on its cardinality, can be embedded in L1L_1 with constant distortion.Comment: 14 pages, 3 figure

    Dual Growth with Variable Rates: An Improved Integrality Gap for Steiner Tree

    Full text link
    A promising approach for obtaining improved approximation algorithms for Steiner tree is to use the bidirected cut relaxation (BCR). The integrality gap of this relaxation is at least 36/3136/31, and it has long been conjectured that its true value is very close to this lower bound. However, the best upper bound for general graphs is still 22. With the aim of circumventing the asymmetric nature of BCR, Chakrabarty, Devanur and Vazirani [Math. Program., 130 (2011), pp. 1--32] introduced the simplex-embedding LP, which is equivalent to it. Using this, they gave a 2\sqrt{2}-approximation algorithm for quasi-bipartite graphs and showed that the integrality gap of the relaxation is at most 4/34/3 for this class of graphs. In this paper, we extend the approach provided by these authors and show that the integrality gap of BCR is at most 7/67/6 on quasi-bipartite graphs via a fast combinatorial algorithm. In doing so, we introduce a general technique, in particular a potentially widely applicable extension of the primal-dual schema. Roughly speaking, we apply the schema twice with variable rates of growth for the duals in the second phase, where the rates depend on the degrees of the duals computed in the first phase. This technique breaks the disadvantage of increasing dual variables in a monotone manner and creates a larger total dual value, thus presumably attaining the true integrality gap.Comment: A completely rewritten version of a previously retracted manuscript, using the simplex-embedding LP. The idea of growing duals with variable rates is still there. 23 pages, 7 figure

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Matroids and Integrality Gaps for Hypergraphic Steiner Tree Relaxations

    Get PDF
    Until recently, LP relaxations have played a limited role in the design of approximation algorithms for the Steiner tree problem. In 2010, Byrka et al. presented a ln(4)+epsilon approximation based on a hypergraphic LP relaxation, but surprisingly, their analysis does not provide a matching bound on the integrality gap. We take a fresh look at hypergraphic LP relaxations for the Steiner tree problem - one that heavily exploits methods and results from the theory of matroids and submodular functions - which leads to stronger integrality gaps, faster algorithms, and a variety of structural insights of independent interest. More precisely, we present a deterministic ln(4)+epsilon approximation that compares against the LP value and therefore proves a matching ln(4) upper bound on the integrality gap. Similarly to Byrka et al., we iteratively fix one component and update the LP solution. However, whereas they solve an LP at every iteration after contracting a component, we show how feasibility can be maintained by a greedy procedure on a well-chosen matroid. Apart from avoiding the expensive step of solving a hypergraphic LP at each iteration, our algorithm can be analyzed using a simple potential function. This gives an easy means to determine stronger approximation guarantees and integrality gaps when considering restricted graph topologies. In particular, this readily leads to a 73/60 bound on the integrality gap for quasi-bipartite graphs. For the case of quasi-bipartite graphs, we present a simple algorithm to transform an optimal solution to the bidirected cut relaxation to an optimal solution of the hypergraphic relaxation, leading to a fast 73/60 approximation for quasi-bipartite graphs. Furthermore, we show how the separation problem of the hypergraphic relaxation can be solved by computing maximum flows, providing a fast independence oracle for our matroids.Comment: Corrects an issue at the end of Section 3. Various other minor improvements to the expositio

    Universal Algorithms for Clustering Problems

    Get PDF
    This paper presents universal algorithms for clustering problems, including the widely studied kk-median, kk-means, and kk-center objectives. The input is a metric space containing all potential client locations. The algorithm must select kk cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm's solution and that of an optimal solution. A universal algorithm's solution SOLSOL for a clustering problem is said to be an (α,β)(\alpha, \beta)-approximation if for all subsets of clients CC', it satisfies SOL(C)αOPT(C)+βMRSOL(C') \leq \alpha \cdot OPT(C') + \beta \cdot MR, where OPT(C)OPT(C') is the cost of the optimal solution for clients CC' and MRMR is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of kk-median, kk-means, and kk-center that achieve (O(1),O(1))(O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other p\ell_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α,β)(\alpha, \beta)-approximation is NP-hard if α\alpha or β\beta is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1),O(1))(O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering.Comment: Appeared in ICALP 2021, Track A. Fixed mismatch between paper title and arXiv titl
    corecore