3,581 research outputs found

    Wronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation

    Full text link
    A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the Korteweg-de Vries equation. Moreover, general positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are explicitly presented as examples of Wronskian solutions.Comment: 11 pages, 6 figures, to be published in Chaos, Solitons & Fractal

    Explicit solutions to the Korteweg-de Vries equation on the half line

    Full text link
    Certain explicit solutions to the Korteweg-de Vries equation in the first quadrant of the xtxt-plane are presented. Such solutions involve algebraic combinations of truly elementary functions, and their initial values correspond to rational reflection coefficients in the associated Schr\"odinger equation. In the reflectionless case such solutions reduce to pure NN-soliton solutions. An illustrative example is provided.Comment: 17 pages, no figure

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Solitary Waves and Compactons in a class of Generalized Korteweg-DeVries Equations

    Full text link
    We study the class of generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l,p) = \int \left( \frac{1}{2} \vp_{x} \vp_{t} - { {(\vp_{x})^{l}} \over {l(l-1)}} + \alpha(\vp_{x})^{p} (\vp_{xx})^{2} \right) dx, where the usual fields u(x,t)u(x,t) of the generalized KdV equation are defined by u(x,t) = \vp_{x}(x,t). This class contains compactons, which are solitary waves with compact support, and when l=p+2l=p+2, these solutions have the feature that their width is independent of the amplitude. We consider the Hamiltonian structure and integrability properties of this class of KdV equations. We show that many of the properties of the solitary waves and compactons are easily obtained using a variational method based on the principle of least action. Using a class of trial variational functions of the form u(x,t)=A(t)exp[β(t)xq(t)2n]u(x,t) = A(t) \exp \left[-\beta (t) \left|x-q(t) \right|^{2n} \right] we find soliton-like solutions for all nn, moving with fixed shape and constant velocity, cc. We show that the velocity, mass, and energy of the variational travelling wave solutions are related by c=2rEM1 c = 2 r E M^{-1}, where r=(p+l+2)/(p+6l) r = (p+l+2)/(p+6-l), independent of nn.\newline \newline PACS numbers: 03.40.Kf, 47.20.Ky, Nb, 52.35.SbComment: 16 pages. LaTeX. Figures available upon request (Postscript or hard copy

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations

    Full text link
    In a recent paper, Kenig, Ponce and Vega study the low regularity behavior of the focusing nonlinear Schr\"odinger (NLS), focusing modified Korteweg-de Vries (mKdV), and complex Korteweg-de Vries (KdV) equations. Using soliton and breather solutions, they demonstrate the lack of local well-posedness for these equations below their respective endpoint regularities. In this paper, we study the defocusing analogues of these equations, namely defocusing NLS, defocusing mKdV, and real KdV, all in one spatial dimension, for which suitable soliton and breather solutions are unavailable. We construct for each of these equations classes of modified scattering solutions, which exist globally in time, and are asymptotic to solutions of the corresponding linear equations up to explicit phase shifts. These solutions are used to demonstrate lack of local well-posedness in certain Sobolev spaces,in the sense that the dependence of solutions upon initial data fails to be uniformly continuous. In particular, we show that the mKdV flow is not uniformly continuous in the L2L^2 topology, despite the existence of global weak solutions at this regularity. Finally, we investigate the KdV equation at the endpoint regularity H3/4H^{-3/4}, and construct solutions for both the real and complex KdV equations. The construction provides a nontrivial time interval [T,T][-T,T] and a locally Lipschitz continuous map taking the initial data in H3/4H^{-3/4} to a distributional solution uC0([T,T];u \in C^0 ([-T,T]; H^{-3/4})$ which is uniquely defined for all smooth data. The proof uses a generalized Miura transform to transfer the existing endpoint regularity theory for mKdV to KdV.Comment: minor edit
    corecore