716 research outputs found

    Excited-state calculations with quantum Monte Carlo

    Get PDF
    Quantum Monte Carlo methods are first-principle approaches that approximately solve the Schr\"odinger equation stochastically. As compared to traditional quantum chemistry methods, they offer important advantages such as the ability to handle a large variety of many-body wave functions, the favorable scaling with the number of particles, and the intrinsic parallelism of the algorithms which are particularly suitable to modern massively parallel computers. In this chapter, we focus on the two quantum Monte Carlo approaches most widely used for electronic structure problems, namely, the variational and diffusion Monte Carlo methods. We give particular attention to the recent progress in the techniques for the optimization of the wave function, a challenging and important step to achieve accurate results in both the ground and the excited state. We conclude with an overview of the current status of excited-state calculations for molecular systems, demonstrating the potential of quantum Monte Carlo methods in this field of applications

    New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation

    Get PDF
    Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.Comment: 19 pages, 1 tabl

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Software for the frontiers of quantum chemistry : An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.Peer reviewe

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Electronic excitation energies in solution at equation of motion CCSD level within a state specific polarizable continuum model approach

    Get PDF
    We present a study of excitation energies in solution at the equation of motioncoupled cluster singles and doubles (EOM-CCSD) level of theory. The solvent effect is introduced with a state specific polarizable continuum model (PCM), where the solute-solvent interaction is specific for the state of interest. Three definitions of the excited state one-particle density matrix (1PDM) are tested in order to gain information for the development of an integrated EOM-CCSD/PCM method. The calculations show the accuracy of this approach for the computation of such property in solution. Solvent shifts between nonpolar and polar solvents are in good agreement with experiment for the test cases. The completely unrelaxed 1PDM is shown to be a balanced choice between computational effort and accuracy for vertical excitation energies, whereas the response of the ground state CCSD amplitudes and of the molecular orbitals is important for other properties, as for instance the dipole moment

    The Polarizable Continuum Model Goes Viral! Extensible, Modular and Sustainable Development of Quantum Mechanical Continuum Solvation Models

    Get PDF
    Synergistic theoretical and experimental approaches to challenging chemical problems have become more and more widespread, due to the availability of efficient and accurate ab initio quantum chemical models. Limitations to such an approach do, however, still exist. The vast majority of chemical phenomena happens in complex environments, where the molecule of interest can interact with a large number of other moieties, solvent molecules or residues in a protein. These systems represent an ongoing challenge to our modelling capabilities, especially when high accuracy is required for the prediction of exotic and novel molecular properties. How to achieve the insight needed to understand and predict the physics and chemistry of such complex systems is still an open question. I will present our efforts in answering this question based on the development of the polarizable continuum model for solvation. While the solute is described by a quantum mechanical method, the surrounding environment is replaced by a structureless continuum dielectric. The mutual polarization of the solute-environment system is described by classical electrostatics. Despite its inherent simplifications, the model contains the basic mathematical features of more refined explicit quantum/classical polarizable models. Leveraging this fundamental similarity, we show how the inclusion of environment effects for relativistic and nonrelativistic quantum mechanical Hamiltonians, arbitrary order response properties and high-level electron correlation methods can be transparently derived and implemented. The computer implementation of the polarizable continuum model is central to the work presented in this dissertation. The quantum chemistry software ecosystem suffers from a growing complexity. Modular programming offers an extensible, flexible and sustainable paradigm to implement new features with reduced effort. PCMSolver, our open-source application programming interface, can provide continuum solvation functionality to any quantum chemistry software: continuum solvation goes viral. Our strategy affords simpler programming workflows, more thorough testing and lower overall code complexity. As examples of the flexibility of our implementation approach, we present results for the continuum modelling of non homogeneous environments and how wavelet-based numerical methods greatly outperform the accuracy of traditional methods usually employed in continuum solvation models

    Hybrid QM/classical models: Methodological advances and new applications

    Get PDF
    Hybrid methods that combine quantum mechanical descriptions with classical models are very popular in molecular modeling. Such a large diffusion reflects their effectiveness, which over the years has allowed the quantum mechanical description to extend its boundaries to systems of increasing size and to processes of increasing complexity. Despite this success, research in this field is still very active and a number of advances have been made recently, further extending the range of their applications. In this review, we describe such advances and discuss how hybrid methods may continue to improve in the future. The various formulations proposed so far are presented here in a coherent way to underline their common methodological aspects. At the same time, the specificities of the different classical models and of their coupling with the quantum mechanical domain are highlighted and discussed, with special attention to the computational and numerical aspects

    The DIRAC code for relativistic molecular calculations

    Get PDF
    DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree?Fock, Kohn?Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.Fil: Saue, Trond. UniversitĂ© Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bast, Radovan. Uit The Arctic University Of Norway; NoruegaFil: Gomes, AndrĂ© Severo Pereira. University Of Lille.; Francia. Centre National de la Recherche Scientifique; FranciaFil: Jensen, Hans Jorgen Aa.. University of Southern Denmark; DinamarcaFil: Visscher, Lucas. Vrije Universiteit Amsterdam; PaĂ­ses BajosFil: Aucar, Ignacio AgustĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de Modelado e InnovaciĂłn TecnolĂłgica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e InnovaciĂłn TecnolĂłgica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de FĂ­sica; ArgentinaFil: Di Remigio, Roberto. Uit The Arctic University of Norway; NoruegaFil: Dyall, Kenneth G.. Dirac Solutions; Estados UnidosFil: Eliav, Ephraim. Universitat Tel Aviv.; IsraelFil: Fasshauer, Elke. Aarhus University. Department of Bioscience; DinamarcaFil: Fleig, Timo. UniversitĂ© Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Halbert, LoĂŻc. Centre National de la Recherche Scientifique; Francia. University Of Lille.; FranciaFil: HedegĂ„rd, Erik Donovan. Lund University; SueciaFil: Helmich-Paris, Benjamin. Max-planck-institut FĂŒr Kohlenforschung; AlemaniaFil: Ilias, Miroslav. Matej Bel University; EslovaquiaFil: Jacob, Christoph R.. Technische UniversitĂ€t Braunschweig; AlemaniaFil: Knecht, Stefan. Eth ZĂŒrich, Laboratorium FĂŒr Physikalische Chemie; SuizaFil: Laerdahl, Jon K.. Oslo University Hospital; NoruegaFil: Vidal, Marta L.. Department Of Chemistry; DinamarcaFil: Nayak, Malaya K.. Bhabha Atomic Research Centre; IndiaFil: Olejniczak, Malgorzata. University Of Warsaw; PoloniaFil: Olsen, JĂłgvan Magnus Haugaard. Uit The Arctic University Of Norway; NoruegaFil: Pernpointner, Markus. Kybeidos Gmbh; AlemaniaFil: Senjean, Bruno. Universiteit Leiden; PaĂ­ses BajosFil: Shee, Avijit. Department Of Chemistry; Estados UnidosFil: Sunaga, Ayaki. Tokyo Metropolitan University; JapĂłnFil: van Stralen, Joost N. P.. Vrije Universiteit Amsterdam; PaĂ­ses Bajo
    • 

    corecore