6,466 research outputs found

    Ioonsete elektroaktiivsete tÀiturite elektromehaaniline modelleerimine ja juhtimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneIoonsed elektroaktiivsed polĂŒmeerid e. tehislihased on polĂŒmeermaterjalid, mille oluline iseĂ€rasus on vĂ”ime muuta elektrienergiat mehhaaniliseks energiaks. Elektroaktiivsetest polĂŒmeeridest valmistatud pehmetel tĂ€ituritel on mitmed huvipakkuvad omadused, nĂ€iteks suur deformatsioon madala rakendatud pinge korral, mĂ€rkimisvÀÀrne tekitatud jĂ”u ja massi suhe ning vĂ”ime töötada nii vesikeskkonnas kui Ă”hus. Niisuguste tĂ€iturite kasutamine on paljutĂ”otav eriti just miniatuursetes elusloodusest inspireeritud robootikarakendustes. NĂ€iteks vĂ”ib tuua aktiivsed mikro-manipulatsioonisĂŒsteemid vĂ”i isepainduvad pehmed kateetrid, mis on iseĂ€ranis nĂ”utud meditsiini-tehnoloogias. KĂ€esoleva vĂ€itekirja uurimissfÀÀriks on sellistest materjalidest valmistatud tĂ€iturmehhanismide modelleerimine, valmistamine ja juhtimine, pÀÀdides sisuliselt ĂŒhes tĂŒkis valmistatud mitme vabadusastmega paralleelmanipulaatorite vĂ€ljatöötamisega. Kasutades kompleksset fĂŒĂŒsikalistel, elektrokeemilistel ning mehaanilistel alusteadmistel pĂ”hinevat mudelit kirjeldatakse ja ennustatakse sellist tĂŒĂŒpi tĂ€iturmehhanismide elektrilise sisendi ja mehhaanilise vĂ€ljundi vahelisi seoseid. Mudel kirjeldab ioonide transpordi dĂŒnaamikat elektrivĂ€ljas, kombineerides Nernst-Plancki ja Poissoni vĂ”rrandeid. Mitmekihilise polĂŒmeermaterjali mehhaaniline kĂ€itumine on seotud laengu- ja massitasakaalu poolt pĂ”hjustatud eri kihtide erineva ruumilise paisumisega ja kahanemisega. KĂ”ike seda kokku vĂ”ttes ning rakendades numbrilist modelleerimist lĂ”plike elementide meetodil saadakse kvantitatiivsed tulemused, mis suudavad prognoosida tĂ€iturmehhanismi kĂ€itumist ja vĂ”imaldavad projekteerida, simuleerida ja optimeerida ka neil tĂ€ituritel pĂ”hinevaid keerulisemaid mehhanisme. Koostatud mudeli valideerimiseks modelleeriti ja valmistati kaks tööpĂ”himĂ”tteliselt sarnast, kuid erinevatel elektroaktiivsetel polĂŒmeermaterjalidel pĂ”hinevat ning eri metoodikatel valmistatud mitmest tĂ€iturist koosnevat mitme vabadusastmega mikromanipulaatorit. VĂ€itekirjas demonstreeritakse, et koostatud mudel on suure tĂ€psusega vĂ”imeline ennustama nii iga individuaalse tĂ€ituri kui ka mĂ”lema manipulaatori kĂ€itumist. Demonstreerimaks piisksadestusprintimismeetodil valmistatud manipulaatori efektiivsust, kirjeldatakse kahte erinevat kontrollrakendust. Esmalt nĂ€idatakse tagasisidestamata kontrollitavat seadet, kus pööratakse nelja tĂ€ituri abil peeglit, suunates laserikiirt X-Y tasapinnas ettemÀÀratud punktidele. Teiseks nĂ€idisrakenduseks on tagasisidestatud kontrollmetoodikaga juhitav mikroskoobi preparaadiliigutaja, mille abil saab preparaati nii tĂ”sta-langetada kui ka pöörata. Manipulaatorite valmistamise kĂ€igus leiti, et piisksadestusprintimise meetodi tĂ€psus, jĂ”udlus ja skaleeritavus vĂ”imaldavad suure tootlikkusega valmistada identseid keerulisi mitmeosalisi manipulaatoreid. See tulemus nĂ€itab ilmekalt uue tehnoloogia eeliseid traditsiooniliste valmistamisviiside ees.Ionic electroactive polymers (IEAPs) actuators are kind of smart composite materials that have the ability to convert electrical energy into mechanical energy. The actuators fabricated using IEAP materials will benefit from attractive features such as high compliance, lightweight, large strain, low voltage, biocompatibility, high force to weight ratio, and ability to operate in an aqueous environment as well as in open air. The future of soft robotic actuation system with IEAP actuators is very promising especially in the microdomain for cutting edge applications such as micromanipulation systems, medical devices with higher dexterity, soft catheters with built-in actuation, bio-inspired robotics with better-mimicking properties and active compliant micromechanisms. This dissertation has introduced an effective modelling framework representing the complex electro-chemo-mechanical dynamics that can predict the electromechanical transduction in this kind of actuators. The model describes the ion transport dynamics under electric field by combining the Nernst-Planck and Poisson’s equation and the mechanical response is associated with the volumetric swelling caused by resulting charge and mass balance. The framework of this modelling method to predict the behavior of the actuator enabled to design, simulate and optimize compliant mechanism using IEAP actuators. As a result, a novel parallel manipulator with three degrees of freedom was modelled and fabricated with two different types of electrode materials and is characterized and compared with the simulation model. It is shown that the developed model was able to predict the behavior of the manipulator with a good agreement ensuring the high fidelity of the modelling framework. In the process of the fabrication, it is found that the manipulator fabricated through additive manufacturing method allows to fabricate multipart and intricate patterns with high throughput production capability and also opens the opportunity to print a matrix array of identical actuators over a wide size scale along with improved performance. Finally, to showcase the competence of the printed manipulator two different control application was demonstrated. At first, an open loop four-way optical switch showing the capability of optically triggering four switches in the X-Y plane in an automated sequence is shown followed by closed-loop micromanipulation of an active microscope stage using model predictive control system architecture is shown. The application of the manipulator can be extended to other potential applications such as a zoom lens, a microscope stage, laser steering, autofocusing systems, and micromirror. Overall this dissertation results in modelling, fabrication, and control of ionic electroactive polymer actuators leading to the development of a low cost, monolithic, flat, multi DOF parallel manipulator for micromanipulation application.https://www.ester.ee/record=b524351

    Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers

    Get PDF
    Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better flexibility in the model setup. A simple geometrically defined model is developed and used to show the feasibility of a proposed biomimetic robot under a prescribed geometric deformation to the robot structure. A more robust mechanics model is then developed which uses linear beam theory is coupled to an equivalent circuit model to simulate actuation of the robot with ionic polymer-metal composite (IPMC) actuators. The mechanics model of the soft robot is compared to that of the geometric model as well as biological jellyfish swimming to highlight its improved efficiency. The design models are characterized against a biological jellyfish model in terms of propulsive efficiency. Using the mechanics model, the locomotive energetics as modeled in literature on biological jellyfish are explored. Locomotive efficiency and cost as a function of swimming cycles are examined for various swimming modes developed, followed by an analysis of the initial transient and steady-state swimming velocities. Applications for fluid pumping or thrust vectoring utilizing the same basic robot design are also proposed. The new design shows a clear advantage over its purely biological counterpart for a soft-robot, with the newly proposed biomimetic swimming mode offering enhanced swimming efficiency and steady-state velocities for a given size and volume exchange

    Exploration of an electroactive polymer actuator for application in a grasshopper inspired pneumatic robotic hopper

    Get PDF
    A Hopper was created to mimic a grasshopper\u27s catapulting kicking action. Electroactive polymers (EAP) were investigated as actuators to simulate the grasshopper\u27s lightweight and strong muscles. EAPs are lightweight materials that require low voltage and yield high force with short response times. This makes them a great potential source for future micro-robotic actuators. The EAP Actuator was simulated and the potential design was studied. The development of consistent and reliable actuation electrodes and nonconductive materials was considered. In addition, the current draw of the EAP Actuator was studied, current draw prediction equations were developed, and a force output study was conducted. Finally, the EAP Actuators were compared to other conventional actuators, including pneumatic actuators, for performance and weight requirements. The EAP Actuator will ultimately be a reliable and powerful actuator for un-tethered, lightweight robotic hoppers. The Hopper was simulated, built, and tested using pneumatic actuators. Each Hopper contained four actuators. The actuators\u27 contraction and release were controlled by a Parallax Basic Stamp II microcontroller and 4 relays. A 9-volt battery, a 0-20 volt variable off board power supply, and a 60 psi off-board compressed air supply were required for operation. The Pneumatic Hopper results were compared to the EAP Hopper\u27s analytical results. For both the Pneumatic and EAP Hoppers, the motion was modeled in Working Model Software. These computer-generated results were compared using Lumped Mass Equations in MatLab and Two Segmented Leg Robotic Hopper Equations presented by R. M. Alexander. The Pneumatic Hopper was then tested for performance. It ultimately yielded a hop height of 2.4 mm and an average hop range of 12.7 mm

    Large Deformable Soft Actuators Using Dielectric Elastomer and Origami Inspired Structures

    Get PDF
    There have been significant developments in the field of robotics. Significant development consists of new configurations, control mechanisms, and actuators based upon its applications. Despite significant improvements in modern robotics, the biologically inspired robots has taken the center stage. Inspired by nature, biologically inspired robots are called ‘soft robots’. Within these robots lies a secret ingredient: the actuator. Soft robotic development has been driven by the idea of developing actuators that are like human muscle and are known as ‘artificial muscle’. Among different materials suitable for the development of artificial muscle, the dielectric elastomer actuator (DEA) is capable of large deformation by applying an electric field. Theoretical formulation for DEA was performed based upon the constitutive hyperelastic models and was validated by using finite element method (FEM) using ABAQUS. For FEM, multistep analysis was performed to apply pre-stretch to the membrane before applying actuation voltage. Based on the validation of DEA, different configurations of DEA were investigated. Helical dielectric elastomer actuator and origami dielectric elastomer actuator were investigated using theoretical modeling. Comparisons were made with FEM to validate the model. This study focus on the theoretical and FEM analysis of strain within the different configuration of DEA and how the actuation strain of the dielectric elastomer can be translated into contraction and/or bending of the actuator

    Ioonsete elektromehaaniliselt aktiivsete polĂŒmeeride deformatsioonist sĂ”ltuv elektroodi impedants

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsioone.Elektromehaaniliselt aktiivsed materjalid on polĂŒmeeridel pĂ”hinevad mitmekihilised komposiitmaterjalid, mis muudavad oma vĂ€list kuju, kui neid elektriliselt stimuleerida; tihti nimetatakse neid ka tehislihasteks. Taolistest materjalidest valmistatud tĂ€iturid pakkuvad huvi nii mikrolaborseadmetes kui ka loodust matkivas robootikas, sest vĂ”imaldavad luua keerukaid ĂŒlipisikesi ajameid. VĂ”rreldes tavapĂ€raste elektrimootoritega vĂ”imaldavad EAP-d (elektromehaaniliselt aktiivsed polĂŒmeerid) helitut liigutust ning neid saab lĂ”igata konkreetse rakenduse jaoks sobivasse suurusesse. EAP-d jagunevad kahte pĂ”hiklassi: elektron- ja ioon-EAP. Doktoritöös kĂ€sitletakse kahte erinevat ioon-EAP materjali, kus mehaaniline koste on tingitud ioonide ĂŒmberpaigutumisest kolmekihilises komposiitmaterjalis. Kuna EAP-de elektromehaanilised omadused sĂ”ltuvad lisaks sisendpinge amplituudile ja sagedusele ka tugevasti ĂŒmbritseva keskkonna parameetritest (nt niiskus ja temperatuur), siis on nendest materjalidest loodud tĂ€iturite juhtimiseks tarvilik kasutada tagasisidet. TĂ€iendav tagasisideallikas vĂ”ib oma omaduste tĂ”ttu aga vĂ€hendada EAP-de rakendusvĂ”imalusi ning seetĂ”ttu on eesmĂ€rgiks luua n-ö isetundlik EAP ajam, mis funktsioneerib samaaegselt nii tĂ€ituri kui ka liigutusandurina. Doktoritööd esitatakse uuritud materjalide elektroodi impedantsi ja deformatsiooni vaheline seos ning kirjeldatakse vastav elektriline mudel. Eraldamaks andursignaali tĂ€ituri sisendpingest pakutakse vĂ€lja elektroodikihi piires tĂ€ituri ja anduri elektriline eraldamine. Loobudes ainult elektroodimaterjalist sĂ€ilitab polĂŒmeerkarkass tĂ€ituri ja anduri mehaanilise ĂŒhendatuse – seega taolises sĂŒsteemis jĂ€rgib sensor tĂ€ituri kuju, kuigi need on elektriliselt lahti sidestatud. Elektroodimaterjali valikuliseks eemaldamiseks kasutatakse mitmeid erinevaid meetodeid (freesimine, laserablatsioon jne) ning ĂŒhtlasi uuritakse nende kasutusmugavust ja protsessi mĂ”ju kogu komposiitmaterjalile.Electromechanically active materials are polymer-based composites exhibiting mechanical deformation under electrical stimulus, i.e. they can be implemented as soft actuators in variety of devices. In comparison to conventional electromechanical actuators, their key characteristics include easy customisation, noiseless operation, straightforward mechanical design, sophisticated motion patterns, etc. Ionic EAPs (electromechanically active polymers) are one of two primary classes of electroactive materials, where actuation is caused mostly by the displacement of ions inside polymer matrix. Mechanical response of ionic EAPs is, in addition to voltage and frequency, dependent on environmental variables such as humidity and temperature. Therefore a major challenge lies in achieving controlled actuation of these materials. Due to their size and added complexity, external feedback devices inhibit the application of micro-scale actuators. Hence, self-sensing EAP actuators—capable for simultaneous actuation and sensing—are desired. In this thesis, sensing based on deformation-dependent electrochemical impedance is demonstrated and modelled for two types of trilayer ionic EAPs—ionic polymer-metal composite and carbon-polymer composite. Separating sensing signal from the input signal of the actuator is achieved by patterning the electrode layers of an IEAP material in a way that different but mechanically coupled sections for actuation and sensing are created. A variety of concepts for pattering the electrode layers (machining, laser ablation, masking, etc.) are implemented and their applicability is discussed

    A Genetic Algorithm Approach for Model Reference Adaptive Control of Ionic Polymer Metal Composites

    Get PDF
    Electroactive polymers undergo physical deformation to external voltage stimuli. These electrically activated polymers possess extraordinary features making them capable as lightweight sensors and actuators in manifold applications. The characteristics of applied voltage and environmental conditions, especially the moisture content surrounding the polymer, have a combined influence on the dynamical behavior of these polymers. In order to characterize these polymers under varying environmental conditions, this paper discusses the experimental procedure and modeling techniques used to derive a representative model. Ionic polymer metal composite polymers are used for this humidity relative electrodynamical study. Insight on the numerous applications of electroactive polymers as actuators and the built model enabled a controller is designed for a typical tracking problem. The control architecture includes a model reference adaptive scheme along with pole-placement control strategies to achieve the goal of tracking. A genetic algorithm approach is implemented to carryout an optimized control action. Tracking control of ionic polymer metal composites as actuator resembling that of a real-world scenario is simulated and reveals promising results
    • 

    corecore