13,039 research outputs found

    Optimal sliding mode controllers for attitude tracking of spacecraft

    Get PDF
    This paper studies two optimal sliding mode control laws using integral sliding mode control (ISM) for some spacecraft attitude tracking problems. Integral sliding mode control combining the first order sliding mode and optimal control is applied to quaternion-based spacecraft attitude tracking manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state dependent Riccati equation (SDRE) and Control Lyapunov function (CLF) approaches are used to solve the infinite-time nonlinear optimal problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify the usefulness of these controllers

    A Novel Fuzzy Logic Based Adaptive Supertwisting Sliding Mode Control Algorithm for Dynamic Uncertain Systems

    Full text link
    This paper presents a novel fuzzy logic based Adaptive Super-twisting Sliding Mode Controller for the control of dynamic uncertain systems. The proposed controller combines the advantages of Second order Sliding Mode Control, Fuzzy Logic Control and Adaptive Control. The reaching conditions, stability and robustness of the system with the proposed controller are guaranteed. In addition, the proposed controller is well suited for simple design and implementation. The effectiveness of the proposed controller over the first order Sliding Mode Fuzzy Logic controller is illustrated by Matlab based simulations performed on a DC-DC Buck converter. Based on this comparison, the proposed controller is shown to obtain the desired transient response without causing chattering and error under steady-state conditions. The proposed controller is able to give robust performance in terms of rejection to input voltage variations and load variations.Comment: 14 page

    Discrete Adaptive Second Order Sliding Mode Controller Design with Application to Automotive Control Systems with Model Uncertainties

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient solution for tracking control problems of highly nonlinear systems with a great deal of uncertainty. High frequency oscillations due to chattering phenomena and sensitivity to data sampling imprecisions limit the digital implementation of conventional first order continuous-time SMC. Higher order discrete SMC is an effective solution to reduce the chattering during the controller software implementation, and also overcome imprecisions due to data sampling. In this paper, a new adaptive second order discrete sliding mode control (DSMC) formulation is presented to mitigate data sampling imprecisions and uncertainties within the modeled plant's dynamics. The adaptation mechanism is derived based on a Lyapunov stability argument which guarantees asymptotic stability of the closed-loop system. The proposed controller is designed and tested on a highly nonlinear combustion engine tracking control problem. The simulation test results show that the second order DSMC can improve the tracking performance up to 80% compared to a first order DSMC under sampling and model uncertainties.Comment: 6 pages, 6 figures, 2017 American Control Conferenc

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Second-order SM approach to SISO time-delay system output tracking

    Get PDF
    A fully linearizable single-input-single-output relative-degree n system with an output time delay is considered in this paper. Using the approach of Pade approximation, system center approach, and second-order sliding-mode (SM) control, we have obtained good output tracking results. The Smith predictor is used to compensate the difference between the actual delayed output and its approximation. A second-order supertwisting SM observer observes the disturbance in the plant. A nonlinear example is studied to show the effect of this methodology

    Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher order sliding modes. To this end, in this paper, a new formulation of an adaptive second order discrete sliding mode control (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new Invariance Principle, not only the asymptotic stability of the controller is guaranteed, but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real-time for a highly nonlinear control problem in spark ignition combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl
    • …
    corecore