11 research outputs found

    A Spanner for the Day After

    Full text link
    We show how to construct (1+ε)(1+\varepsilon)-spanner over a set PP of nn points in Rd\mathbb{R}^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,ε(0,1)\vartheta,\varepsilon \in (0,1), the computed spanner GG has O(εcϑ6nlogn(loglogn)6) O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) edges, where c=O(d)c= O(d). Furthermore, for any kk, and any deleted set BPB \subseteq P of kk points, the residual graph GBG \setminus B is (1+ε)(1+\varepsilon)-spanner for all the points of PP except for (1+ϑ)k(1+\vartheta)k of them. No previous constructions, beyond the trivial clique with O(n2)O(n^2) edges, were known such that only a tiny additional fraction (i.e., ϑ\vartheta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    A Spanner for the Day After

    Get PDF
    We show how to construct (1+epsilon)-spanner over a set P of n points in R^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters theta, epsilon in (0,1), the computed spanner G has O(epsilon^{-7d} log^7 epsilon^{-1} * theta^{-6} n log n (log log n)^6) edges. Furthermore, for any k, and any deleted set B subseteq P of k points, the residual graph G B is (1+epsilon)-spanner for all the points of P except for (1+theta)k of them. No previous constructions, beyond the trivial clique with O(n^2) edges, were known such that only a tiny additional fraction (i.e., theta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion

    A spanner for the day after

    Get PDF
    We show how to construct (1 + ε)-spanner over a set P of n points in ℝd that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, ε ∈ (0, 1), the computed spanner G has O(ε−7d log7 ε−1 · ϑ−6n log n(log log n)6) edges. Furthermore, for any k, and any deleted set B ⊆ P of k points, the residual graph G \ B is (1 + ε)-spanner for all the points of P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion.</p

    Light Euclidean Spanners with Steiner Points

    Get PDF
    The FOCS'19 paper of Le and Solomon, culminating a long line of research on Euclidean spanners, proves that the lightness (normalized weight) of the greedy (1+ϵ)(1+\epsilon)-spanner in Rd\mathbb{R}^d is O~(ϵd)\tilde{O}(\epsilon^{-d}) for any d=O(1)d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}) (where O~\tilde{O} hides polylogarithmic factors of 1ϵ\frac{1}{\epsilon}), and also shows the existence of point sets in Rd\mathbb{R}^d for which any (1+ϵ)(1+\epsilon)-spanner must have lightness Ω(ϵd)\Omega(\epsilon^{-d}). Given this tight bound on the lightness, a natural arising question is whether a better lightness bound can be achieved using Steiner points. Our first result is a construction of Steiner spanners in R2\mathbb{R}^2 with lightness O(ϵ1logΔ)O(\epsilon^{-1} \log \Delta), where Δ\Delta is the spread of the point set. In the regime of Δ21/ϵ\Delta \ll 2^{1/\epsilon}, this provides an improvement over the lightness bound of Le and Solomon [FOCS 2019]; this regime of parameters is of practical interest, as point sets arising in real-life applications (e.g., for various random distributions) have polynomially bounded spread, while in spanner applications ϵ\epsilon often controls the precision, and it sometimes needs to be much smaller than O(1/logn)O(1/\log n). Moreover, for spread polynomially bounded in 1/ϵ1/\epsilon, this upper bound provides a quadratic improvement over the non-Steiner bound of Le and Solomon [FOCS 2019], We then demonstrate that such a light spanner can be constructed in Oϵ(n)O_{\epsilon}(n) time for polynomially bounded spread, where OϵO_{\epsilon} hides a factor of poly(1ϵ)\mathrm{poly}(\frac{1}{\epsilon}). Finally, we extend the construction to higher dimensions, proving a lightness upper bound of O~(ϵ(d+1)/2+ϵ2logΔ)\tilde{O}(\epsilon^{-(d+1)/2} + \epsilon^{-2}\log \Delta) for any 3d=O(1)3\leq d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}).Comment: 23 pages, 2 figures, to appear in ESA 2

    Research on the integrated management and mapping method of BOM multi-view for complex products

    Get PDF
    The bill of materials (BOM) runs through all stages of the life cycle of manufacturing products, which is the core of manufacturing enterprises. With increasing complexity of modern manufacturing engineering and widespread using of intelligent manufacturing technology, the BOM data keeps rising and transformation process is increasingly frequent and complicated. In order to improve efficiency of BOM management and ensure the diversity, accuracy and consistency of BOM in the product development, the BOM multi-view integrated management and mapping method for complex products were researched. First, a complex product BOM integrated management framework and the evolution model based on multiple views were established which described the BOM integrated management mechanism and transformation relationship among different BOMs. Subsequently, process of BOM transformation was analyzed, and a BOM transformation model was proposed. Moreover, a rule-based BOM multi-view mapping algorithm was proposed. With the rule definition and mathematical modelling for key components, the complex mapping principle was elaborated. Finally, the BOM multi-view transformation cases and the prototype system were illustrated and discussed, which verified the feasibility and versatility of model and method

    A spanner for the day after

    Get PDF
    We show how to construct (1+ε)-spanner over a set P of n points in Rd that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,ε∈(0,1), the computed spanner G has O(ε−cϑ−6nlogn(loglogn)6) edges, where c=O(d). Furthermore, for any k, and any deleted set B⊆P of k points, the residual graph G∖B is (1+ε)-spanner for all the points of P except for (1+ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving connectivity.Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion
    corecore