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Abstract
The FOCS’19 paper of Le and Solomon [59], culminating a long line of research on Euclidean
spanners, proves that the lightness (normalized weight) of the greedy (1 + ε)-spanner in Rd is Õ(ε−d)
for any d = O(1) and any ε = Ω(n− 1

d−1 ) (where Õ hides polylogarithmic factors of 1
ε
), and also

shows the existence of point sets in Rd for which any (1 + ε)-spanner must have lightness Ω(ε−d).1

Given this tight bound on the lightness, a natural arising question is whether a better lightness
bound can be achieved using Steiner points.

Our first result is a construction of Steiner spanners in R2 with lightness O(ε−1 log ∆), where
∆ is the spread of the point set.2 In the regime of ∆ � 21/ε, this provides an improvement over
the lightness bound of [59]; this regime of parameters is of practical interest, as point sets arising
in real-life applications (e.g., for various random distributions) have polynomially bounded spread,
while in spanner applications ε often controls the precision, and it sometimes needs to be much
smaller than O(1/ logn). Moreover, for spread polynomially bounded in 1/ε, this upper bound
provides a quadratic improvement over the non-Steiner bound of [59], We then demonstrate that
such a light spanner can be constructed in Oε(n) time for polynomially bounded spread, where
Oε hides a factor of poly( 1

ε
). Finally, we extend the construction to higher dimensions, proving a

lightness upper bound of Õ(ε−(d+1)/2 + ε−2 log ∆) for any 3 ≤ d = O(1) and any ε = Ω(n− 1
d−1 ).
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1 Introduction

A t-spanner for a set P of points in the d-dimensional Euclidean space Rd is a geometric
graph that preserves all the pairwise Euclidean distances between points in P to within a
factor of t, called the stretch factor ; by geometric graph we mean a weighted graph in which
the vertices correspond to points in Rd and the edge weights are the Euclidean distances
between the corresponding points. The study of Euclidean spanners dates back to the seminal
work of Chew [27, 28] from 1986, which presented a spanner with constant stretch and O(n)
edges for any set of n points in R2. In the three following decades, Euclidean spanners

1 The lightness of a spanner is the ratio of its weight and the MST weight.
2 The spread ∆ = ∆(P ) of a point set P in Rd is the ratio of the largest to the smallest pairwise distance.
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67:2 Light Euclidean Spanners with Steiner Points

have evolved into an important subarea of Discrete and Computational Geometry, having
found applications in many different areas, such as approximation algorithms [65], geometric
distance oracles [42, 45, 44, 43], and network design [52, 60]; see the book by Narasimhan and
Smid “Geometric Spanner Networks” [61] for an excellent account on Euclidean spanners and
some of their applications. Numerous constructions of Euclidean spanners in two and higher
dimensions were introduced over the years, such as Yao graphs [70], Θ-graphs [29, 54, 55, 66],
the (path-)greedy spanner [4, 23, 61] and the gap-greedy spanner [67, 6] – unveiling an
abundance of techniques, tools and insights along the way; refer to the book of [61] for more
spanner constructions.

In addition to low stretch, many applications require that the spanner would be sparse,
in the unweighted and/or weighted sense. The sparsity (respectively, lightness) of a spanner
is the ratio of its size (respectively, weight) to the size (resp., weight) of a spanning tree
(resp., MST), providing a normalized notion of size (resp., weight), which should ideally be
O(1). For any dimension d = O(1), spanners with constant sparsity are known since the 80s
[70, 29, 54, 55, 66, 4, 67, 6]; also, it is known since the early 90s that the greedy spanner
has constant lightness [4]. The constant bounds on the sparsity and lightness depend on
both ε and d. In some applications, ε must be a very small sub-constant parameter, so as to
achieve the highest possible precision and minimize potential errors, and in some situations ε
may be as small as n−c for some constant 0 < c < 1. Consequently, besides the theoretical
appeal, achieving the precise dependencies on ε and d in the sparsity and lightness bounds is
of practical importance.

Culminating a long line of work, in FOCS’19 Le and Solomon [59] showed that the
precise dependencies on ε in the sparsity and lightness bounds are Θ(ε1−d) and Θ̃(ε−d),
respectively, for any d = O(1) and any ε = Ω(n−

1
d−1 ); throughout we shall use Õ, Ω̃, Θ̃ to

hide polylogarithmic factors of 1
ε . The lower bounds of [59] are proved for the d-dimensional

sphere, for d = O(1). On the upper bound side, sparsity O(ε1−d) is achieved by a number of
classic constructions such as Yao graphs [70], Θ-graphs [29, 54, 55, 66], the (path-)greedy
spanner [4, 23, 61] and the gap-greedy spanner [67, 6], and the argument underlying all
these upper bounds is basic and simple. On the other hand, constant lightness upper
bound (regardless of the dependency on ε and d) is achieved only by the greedy algorithm
[4, 31, 32, 65, 61, 41, 13, 59], and all known arguments for constant lightness are highly
nontrivial, even for d = 2; in fact, the proofs in [4, 31, 32, 65] have missing details. The first
complete proof was given in the book of [61], in a 60-page chapter, where it is shown that
the greedy (1 + ε)-spanner has lightness O(ε−2d), which improved the dependencies on ε and
d given in all previous work. In SODA’19, Borradaile, Le and Wulff-Nilsen [13] presented a
shorter and arguably simpler alternative proof that applies to the wider family of doubling
metrics, which improves the ε dependency provided in FOCS’15 by Gottlieb [41] for doubling
metrics, but is inferior to the lightness bound of O(ε−2d) by [61].3 Finally, the lightness
bound of Õ(ε−d) of [59] was proved via a tour-de-force argument; interestingly, the proof for
d = 2 is much more intricate than for higher dimensions d ≥ 3.

Le and Solomon [59] showed that, counter-intuitively, one can use Steiner points to bypass
the sparsity lower bound of Euclidean spanners. Specifically, in this way they reduced the
sparsity upper bound almost quadratically to Õ(ε(1−d)/2), and also provided a matching

3 The doubling dimension of a metric space (X, δ) is the smallest value d such that every ball B in the
metric space can be covered by at most 2d balls of half the radius of B. This notion generalizes the
Euclidean dimension, since the doubling dimension of the Euclidean space Rd is Θ(d). A metric space
is called doubling if its doubling dimension is constant.
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lower bound for d = 2. Their lower bound for sparsity is derived from a lightness lower
bound; specifically, they first prove that, for a set of points evenly spaced on the boundary
of the unit square, with distances Θ(

√
ε) between neighboring points, any Steiner (1 + ε)-

spanner must incur lightness Ω̃( 1
ε ), and then they translated the lightness lower bound into a

sparsity lower bound of Ω̃(
√

1/ε). Whether or not Steiner points can be used to reduce the
lightness remained open in [59], but this should not come as a surprise.4 First, bounding the
lightness of spanners is inherently more difficult than bounding their sparsity – this is true
for both Euclidean spaces and doubling metrics, as well as other graph families including
general weighted graphs [4, 31, 32, 65, 61, 41, 13, 59, 26, 39, 33]. Second, constructing
Steiner trees and spanners with asymptotically improved bounds is inherently more difficult
than constructing their non-Steiner counterparts [34, 35, 68, 57, 11, 58]. In our particular
case, while the classic sparsity upper bound for non-Steiner Euclidean spanners is simple, its
improved counterpart for Steiner spanners by [59] requires a number of nontrivial insights and
is rather intricate. On the other hand, the lightness upper bound of [59] uses a tour-de-force
argument, and as mentioned already this is true even for d = 2. Consequently, obtaining an
improved lightness bound using Steiner points seems currently out of reach, at least until an
inherently simpler proof to [59] for non-Steiner lightness is found (if one exists).

1.1 Our Contribution

In this paper, we explore the power of Steiner points in reducing lightness for Euclidean
spaces of bounded spread ∆.5 Point sets of bounded spread have been studied extensively
for Euclidean spanners and related geometric objects [9, 53, 30, 51, 17, 16, 36, 64, 1, 2, 5,
49, 50, 19, 62, 63, 18, 69, 21]. The motivation for studying point sets of bounded spread is
three-fold.
1. Such point sets arise naturally in practice, and are thus important in their own right;

indeed, for many random distributions, the spread is polynomial in the number of points
– in expectation and with high probability. In particular, it is known that for n-point
sets drawn uniformly at random from the unit square, the expected spread is Θ(n),
and the expected spread in the unit d-dimensional hypercube is n2/d for any d = O(1).
Researchers have studied random distributions of point sets, in part to explain the success
of solving various geometric optimization problems in practice [9, 53, 30], and there are
many results on spanners for random point sets [24, 7, 37, 10, 38, 14, 61, 69, 15, 21, 8, 56].
Of course, the family of bounded spread point sets is much wider than that of random
point sets.

2. Euclidean spanners can be constructed in (deterministic) O(n) time in such point sets [20],
while there is no o(n logn)-time algorithm for constructing Euclidean spanners in arbitrary
point sets. (The result of [20] extends to other geometric objects, such as WSPD and
compressed quadtrees, and some of the aforementioned references (e.g., [50, 17]) build
on this result to achieve faster algorithms for other geometric problems for point sets of
polynomially bounded spread.)

3. The case of bounded spread is sometimes used as a stepping stone towards the general
case; see, e.g., [40, 47, 46, 21, 22, 3, 59].

4 The lightness of Steiner spanners can be defined with respect to the SMT (Steiner minimum tree)
weight, but we can also stick to the original definition, since the SMT and MST weights differ by a
constant factor smaller than 2.

5 The spread of a Euclidean space is the ratio of the maximum to minimum pairwise distances in it.
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67:4 Light Euclidean Spanners with Steiner Points

As mentioned above, Le and Solomon [59] showed that for a set of points evenly spaced
on the boundary of the unit square, with distances Θ(

√
ε) between neighboring points, any

Steiner (1 + ε)-spanner must incur lightness Ω̃( 1
ε ). Note that the spread of this point set is

1√
ε
. The non-Steiner upper bound for d = 2 by [59] is Õ(ε−2). A natural arising question is

whether one can improve the lightness upper bound of Õ(ε−2) using Steiner points, ideally
quaratically, for point sets of bounded spread. We answer this question in the affirmative.

I Theorem 1. Any point set P in R2 of spread ∆ admits a Steiner (1 + ε)-spanner of
lightness O( log ∆

ε ).

Recalling that the lower bound of Ω̃( 1
ε ) by [59] applies to a point set of spread 1√

ε
, the

lightness upper bound provided by Theorem 1 is therefore tight (up to polylogarithmic
factors in 1

ε ) for point sets of spread poly( 1
ε ). Moreover, this upper bound improves the

general upper bound of Õ(ε−2) from [59] in the regime log ∆ � ε−1, i.e., when ∆ � 21/ε.
For spread polynomial in n, we get an improvement over [59] as long as ε� 1

logn . Of course,
the improvement gets more significant as ε decays – in the most extreme situation ε is inverse
polynomial in n, and then the improvement over [59] is polynomial in n even when ∆ is
exponential in n.

Our second result is that a Steiner spanner with near-optimal lightness can be constructed
in linear time, when the spread ∆ is polynomial in n.

I Theorem 2. For any point set P in R2 of spread ∆ = O(nc), for any c = O(1), a Steiner
(1 + ε)-spanner of lightness O( log ∆

ε ) can be constructed in Oε(n) time, where Oε(.) hides a
factor of poly( 1

ε ).

Higher dimensions
The lower bound of [58] states that any (non-Steiner) (1 + ε)-spanner must incur lightness
Ω(ε−d), for any d = O(1). We show that, similarly to the 2-dimensional case, one can improve
the lightness almost quadratically using Steiner points, for point sets of bounded spread.

I Theorem 3. For any d ≥ 3, any point set P in Rd of spread ∆ admits a Steiner (1 + ε)-
spanner of lightness Õ(ε−(d+1)/2 + ε−2 log ∆).

Interestingly, the dependence on the spread in the lightness bound provided by Theorem
3 does not grow with the dimension, hence the improvement over the non-Steiner bound gets
more significant as the dimension grows, provided of course that the spread is not too large.

1.2 Proof Overview
Proof of Theorem 1
We partition the set of pairs of points into m = O(log ∆) subsets {P1, . . . ,Pm} where Pi
contains pairs of distances in [2i−1, 2i). The objective is to show that one can preserve
distances between all pairs in Pi to within a factor of (1 + ε) using a Steiner spanner Si of
weight O(w(MST)

ε ); by taking the union of all such spanners, we obtain a Steiner spanner
with the required lightness.

Let Li = 2i. A natural idea to preserve distances in Pi is to (a) find an (εLi)-net Ni6 of
P and (b) add to the spanner edges between any two net points p and q such that (u, v) ∈ Pi
and there is a pair (u, v) in Pi such that u and v are covered by (i.e., within distance εLi

6 A subset of points N ⊆ P is an r-net if every point in P is within distance r from (or covered by) some
point in N and pairwise distances between points in N are larger than r.
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from) p and q, respectively. The stretch will be in check because u and v are at distance
roughly O(ε)||u, v|| from their net points and thus, the additive stretch between u and v is
O(ε)||u, v||. For lightness, we can show that the number of net points |Ni| = O(w(MST)

εLi
), and

using a (nontrivial) packing argument, there are about Ni
ε edges of length O(Li) added in

step (b). Thus, the total weight of the spanner is O(w(MST)
ε2 ), which is bigger than our aimed

lightness bound by a factor of 1
ε .

To shave the factor of 1
ε , we employ two ideas. First, we take Ni to be a

√
εLi-net of P .

In this way |Ni| = O(w(MST)√
ε

). By applying the 2-dimensional Steiner spanner construction
of [59] as a blackbox, we obtain a Steiner spanner with only |Ni|√

ε
edges of length O(Li) that

approximates distances between points in Ni; we have thus reduced the weight bound to
O(w(MST)

ε ), as required. The problem now is with the stretch guarantee: Preserving distances
between the points in Ni is no longer sufficient. Indeed, for every pair (u, v) ∈ Pi, the
distance between u and v to the nearest net points is O(

√
ε)||u, v||, hence the resulting stretch

is (1 +O(
√
ε))||u, v||. We overcome this hurdle by introducing a novel construction of single-

source spanners, which generalize Steiner shallow-light trees of Solomon [68]. Specifically, we
open the black-box of [59] and observe that every time we want to preserve the distance from
(some) Steiner point s to a net-point p ∈ Ni, instead of connecting s to p by a straight line of
weight O(Li), we can use a single-source spanner (rooted at s) of weight O(Li) to preserve
distances (up to a (1 + ε) factor) from s to every point within distances O(

√
εLi) from p. As

a result, our Steiner spanner can preserve distances between any two points (u, v) ∈ Pi to
within a factor of (1 + ε), where u ∈ B(p,O(

√
εLi)), v ∈ B(q,O(

√
εLi)), and p, q are their

nearest net points.

Proof of Theorem 3
By extending the construction in Theorem 1, we can construct a Steiner spanner with
lightness Õ(ε−(d+1)/2 log ∆) as follows: for each Pi, we construct an εLi-net Ni and then
apply the construction of [59] as a black box to obtain a Steiner spanner Si for Ni with
weight Õ(ε−(d−1)/2|Ni|Li). The stretch will be in check since Ni is an εLi-net. Since
|Ni| = O(w(MST)

εLi
), w(Si) = Õ(ε−(d+1)/2w(MST)). The union of Steiner spanners Si for all

i ∈ [1,m] has weight Õ(ε−(d+1)/2 log ∆)w(MST). Note when d ≥ 3, we can not take Ni as a√
εLi-net since the construction of single-source spanners with O(Li) weight in the proof of

Theorem 1 only works when d = 2.
Most of our effort is to further refine the result in a way that log ∆ term is multiplied only by

ε−2 and not by the term that depends on d. We first reduce to the problem of approximating
distances between pairs (of endpoints) in a family of edge sets E = {E1, . . . , Em} with
m = O(log ∆), where edges of Ei have length (roughly) in the interval ( 1

2εi ,
1
εi ] and edges in

E1 have length in [1, 1
ε ). Let Li = 1

εi . For a technical reason, we will subdivide edges of
MST by using a set of Steiner points K so that each new edge has length in (1/2, 1].

We construct a Steiner spanner for edges in E using a charging cover tree T : T has depth
m + 1, level i of T is associated with an εLi-cover7 of P ∪ K, and leaves (at level 0) of
T are points in P ∪K. For each cover Ni at level i of T , we construct a graph Hi where
V (Hi) = Ni and there is an edge (u, v) between u, v ∈ Ni if there is a corresponding edge in
Ei whose endpoints are covered by u and v, respectively. Graph Hi is used to distinguish
between low degree points, whose degree in Hi is O( 1

ε ), and high degree points, whose degree

7 A subset of points N ⊆ P is an r-cover if every point in P is within distance r from some point in N .

ESA 2020



67:6 Light Euclidean Spanners with Steiner Points

in Hi is Ω( 1
ε ). T will have two charging properties: (1) every point p ∈ Ni has at least

εLi uncharged descendants and (2) at every level i, one can charge up to εLi
2 uncharged

descendants of high degree points. Note that, once an uncharged point is charged at level i,
it will be marked as charged at higher levels; initially at level 0, every point is uncharged.

We then use a charging cover tree T to guide the Steiner spanner construction. Specifically,
at level i, we add all edges incident to low degree points to the spanner and we can show
that the total weight of all these edges over all levels is at most O(w(MST) log ∆

ε2 ). For high
degree points, we apply the construction of Le and Solomon [59] to obtain a Steiner spanner
Si, and we charge the weight of Si to Liε

2 uncharged descendants of each high degree point.
This charging is possible by the charging property (2) of T . We then show that each point
in K ∪ P is charged a weight at most Õ(ε−(d+1)/2). Thus, the total weight of the Steiner
spanners (for high degree points) at all levels is Õ(ε−(d+1)/2)w(MST).

Our construction of a charging cover tree is inspired by the construction of a hierarchy
of clusters in the iterative clustering technique. The technique was initially developed by
Chechick and Wulff-Nilsen [25] to construct light spanners for general graphs, and then was
adapted to many other different settings [25, 12, 13, 59, 58]. Our construction is directly
inspired by the construction of Borradaile et al. [13] in the doubling dimension setting.
However, our construction is much simpler. Specifically, we are able to decouple the Steiner
spanner construction from the charging cover tree construction. We refer readers to Section 5
for more details.

2 Preliminaries

Let P be a point set of n points in Rd. We denote by ||p, q|| the Euclidean distance between
two points p, q ∈ Rd. Let B(p, r) = {x ∈ Rd, ||p, x|| ≤ r} be the ball of radius r centered at
p. Given a point p and a set of point Q on the plane, we define the distance between p and
Q, denoted by d(p,Q), to be infx∈Q ||p, x||.

An r-cover of P is a subset of points N ⊆ P such that for every point x ∈ P , there is at
least one point p ∈ N such that ||p, x|| ≤ r; we say x is covered by p. When the value of r is
clear from the context, we simply call N a cover of P . A subset of point N ⊆ P is called an
r-net if N is an r-cover of P and also an r-packing of P , i.e., for every two points p 6= q ∈ N ,
||p, q|| > r.

Let G be a graph with weight function w on the edges. We denote the vertex set and
edge set of G by V (G) and E(G), respectively. Let dG(p, q) be the distance between two
vertices p, q of G. We denote by G[X] the subgraph induced by a subset of vertices X.

G is geometric in Rd if each vertex of G corresponds to a point p ∈ Rd and for every
edge (p, q), w(p, q) = ||p, q||. In this case, we use points to refer to vertices of G. We say
that a geometric graph G is a (1 + ε)-spanner of P if V (G) = P and for every two points
p 6= q ∈ P , dG(p, q) ≤ (1 + ε)||p, q||. We say that G is a Steiner (1 + ε)-spanner for P if
P ⊆ V (G) and for every two points p 6= q ∈ P , dG(p, q) ≤ (1 + ε)||p, q||. Points in V (G) \ P
are called Steiner points. Note that distances between Steiner points may not be preserved
in a Steiner (1 + ε)-spanner.

3 Steiner Spanners on the Plane

We focus on constructing a Steiner spanner with good lightness; the fast construction is in
Section 4. We will use the following geometric Steiner shallow-light tree (SLT) construction
by Solomon [68].
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I Lemma 4. Let L be a line segment of length
√
ε and p be a point on the plane such that

d(p, L) = 1. For any point set X ∈ L, there is a geometric graph H of weight Θ(1) such that
dH(p, x) ≤ (1 + ε)||p, x|| for any point x ∈ X.

We will use single-source spanners (defined below) as a black box in our construction.

I Definition 5 (Single-source spanners). Given a point p (source), a set of points X on the
plane and a connected geometric graph SX spanning X, a single source (1 + ε)-spanner w.r.t.
(p,X, SX) is a graph H such that for every x ∈ X: ||p, x|| ≤ dH∪SX (p, x) ≤ (1 + ε)||p, x||.

Our starting point is the construction of a single source spanner from a point p to point set X
enclosed in a circle C of radius

√
ε such that d(p, C) = 1. We show that, if SX approximately

preserves the distances between pairs of points in X up to a (1 + gε) factor for any constant
g, it is possible to construct a single-source spanner with weight O(1). It is not so hard to
see that if Steiner points are not allowed, a lower bound of weight Ω( 1√

ε
) holds here.

I Lemma 6. Let X be a set of points in a circle C of radius
√
ε on the plane and a point p

of distance 1 from C. Let SX be a (1 + gε)-spanner of X for any constant g. Then there is a
single-source (1 + 13ε)-spanner H w.r.t. (p,X, SX) of weight O(1) when g � 1

ε .

Proof. Let c be a center of C. W.l.o.g, we assume that pc is parallel to y-axis. Let Q be the
axis-aligned smallest square bounding C. Observe that the side length of Q is at mos 2

√
ε.

Place a 2√
ε
× 2√

ε
grid W on Q, so that every cell of W is a square of side length ε. Observe

that:

w(W ) ≤ ε · 4
ε

= O(1)

We extend W to W1 by connecting an (arbitrary) corner of each grid cell to an arbitrary
point of X in the cell. Observe that: w(W1) = O(W ) = O(1). Let P be the set of grid
points on the side, say L, of Q that is closer to p (than the opposite side). We apply the
construction in Lemma 4 to p and L to obtain a geometric graph K. Let H = W1 ∪K. Since
w(K) = O(1) by Lemma 4, it holds that w(H) = O(1).

It remains to show the stretch bound. Let x be any point of X and v be the point in the
same cell with x that is connected to a corner, say z of grid W . We will show below that:

dW∪K(z, p) ≤ (1 + 3ε)||p, z|| (1)

If Equation 1 holds, it would imply:

dSX∪H(x, p) ≤ dSX (x, v) + dH(v, p) ≤ (1 + gε)
√

2ε+ dH(v, p)

≤ (1 + gε)
√

2ε+ dH(z, v) + dH(z, p)
g�1/ε
≤ 2

√
2ε+

√
2ε+ dW∪K(z, p)

Eq. 1
≤ (1 + 3ε)||p, z||+ 3

√
2ε
||x,z||≤

√
2ε

≤ (1 + 3ε)(||p, x||+
√

2ε) + 3
√

2ε

≤ (1 + 3ε)||p, x||+ 7
√

2ε ≤ (1 + 13ε)||p, x|| since ||p, x|| ≥ 1

Thus, it remains to prove Equation 1. To this end, let y be the projection of z on L.
(Point y is also a grid point; see Figure 1) Let y′, z′ be projections of y and z on the
line containing pc, respectively. Let u be the intersection of pz and yy′. Observe that
||p, y|| ≤ (1 + ε) ≤ (1 + ε)||p, u||. Thus,

||p, y||+ ||y, z|| ≤ (1 + ε)||p, u||+ ||y, z|| ≤ (1 + ε)||p, u||+ ||u, z|| ≤ (1 + ε)||p, z|| (2)

ESA 2020
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Figure 1 (Left) A single source spanner from p to a set of points enclosed by a circle of radius
√
ε.

One point in each non-empty cell is connected to a corner by a thick edge. (Right) An illustration
for analyzing the stretch of pz.

Since dW (z, y) = ||z, y|| and dK(y, p) = (1 + ε)||p, y|| by Lemma 4, we have:

dW∪K(z, p) ≤ (1 + ε)(||z, y||+ ||p, y||)
Eq. 2
≤ (1 + ε)(1 + ε)||p, z|| ≤ (1 + 3ε)||p, z|| (3)

which implies Equation 1. J

We obtain the following corollary of Lemma 6.

I Corollary 7. Let X be a set of points in a circle C of radius
√
εL on the plane and a point

p of distance L/h from C for some constant h ≥ 1. Let SX be a (1 + gε)-spanner of X for
any constant g. Then there is a single-source (1 + 13ε)-spanner H w.r.t. (p,X, SX) of weight
O(hL) when g � 1

ε .

Proof. We scale the space by L/h. In the scaled space, C has radius h
√
ε and d(p, C) = 1.

Let C1, C2, . . . , Cm, where m = O(h2), be circles of radius
√
ε covering C; such a set of circles

can be constructed greedily. We apply Lemma 6 to p and each Ci to construct a single-source
(1+13ε)-spanner Hi from p to each Ci. The final spanner is H = ∪mi=1Hi that has total weight
O(h2) in the scaled metric. Thus, in the original metric, w(H) = O(h2L/h) = O(hL). J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Assume that the minimum pairwise distance is 1. Let P =
(
P
2
)
be

all pairs of points. Partition P into O(log ∆) sets P1,P2, . . . ,Pdlog ∆e where Pi is the set of
pairs (x, y) such that ||x, y|| ∈ [2i−1, 2i).

For a fixed i, we claim that there is a geometric graph Hi such that for every two distinct
points (x, y) ∈ Pi, dH1∪...∪Hi(x, y) ≤ (1 + ε)||x, y|| and that w(Hi) = O( 1

ε )w(MST). Thus,
H1 ∪ . . . ∪Hdlog ∆e is a Steiner spanner with weight O( log ∆

ε )w(MST).
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Figure 2 (a) Square B is divided into O(1) horizontal and vertical bands of width Li/8 each. (b)
The Steiner spanner construction for two non-adjacent horizontal bands Ha and Hb. The dashed
cone represents a single-source spanner from r to circle B(p,

√
εLi).

We now focus on constructing Hi. Let Si−1 = H1 ∪H2 . . . ∪Hi−1. We will construct a
spanner with stretch (1 + cε) for some constant c. By induction, we can assume that:

dSi−1(p, q) ≤ (1 + cε)||p, q|| (4)

for any pair (p, q) ∈ P1 ∪ . . . ∪ Pi−1.
Let Li = 2i and Ni be a (

√
εLi)-net of P . For each point x, let Ni(x) be the net point

that covers x: the distance from x to Ni(x) is at most
√
εLi.

B Claim 8. |Ni| = O(w(MST)
Li
√
ε

).

Proof. Consider the circle B(p,
√
εLi) centered at p; B(p,

√
εLi) contains a segment of length

Ω(
√
εLi) of the MST, which is not contained in any other circle. Thus, the claim holds. C

Next, we consider the smallest axis-aligned square Q bounding the point set. In the
following, we divide Q into a set of (overlapping) sub-squares B of side length Θ(Li) each.
This way, for any pair (x, y) ∈ Pi (of distance at most Li), there is a sub-square entirely
containing Ni(x), Ni(y), and the balls of radius O(

√
εLi) around the two net points.

Constructing B. We first divide Q into subsquares of side length 5Li each8. For each
subsquare B, we extend its borders equally to four directions by an amount of 2Li in
each direction. After this extension, B has side length 9Li.

B Claim 9. Every point in Q belongs to at most 4 subsquares in B. Furthermore, for each
pair (x, y) ∈ Pi, there is a subsquare B ∈ B such that B(Ni(x),

√
εLi), B(Ni(y),

√
εLi) are

entirely contained in B.

Proof. Let B be a subsquare in B containing one of the endpoints of (x, y), say x, before
extension. Then, after extension, B will contain both x, y since ||x, y|| ≤ Li, and furthermore,
x and y are at least Li away from the boundary since we extended B by 2Li in each direction.
Thus, points in B(Ni(x),

√
εLi) (B(Ni(y),

√
εLi)) will be at most 2

√
εLi < Li from x (y)

when ε� 1. C

8 We assume that the side length of Q is divisible by 5Li; otherwise, we can extend Q in such a way.
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Consider a subsquare B ∈ B. Let NB = Ni ∩ B. By abusing notation, we denote by
Pi ∩B all the pairs in B of Pi. We will show that:

B Claim 10. There is a Steiner spanner SB of weight at most O(|NB |Li/
√
ε) such that for

any pair of points (x, y) ∈ Pi ∩B, it holds that:

dSB∪Si−1(x, y) ≤ (1 + cε)||x, y||

for some big enough constant c.

Proof. We divide B into O(1) horizontal (vertical) bands of length (width) Li/8 so that for
any two points x, y ∈ Pi ∩ B, Ni(x) and Ni(y) are in two non-adjacent horizontal bands
and/or vertical bands (see Figure 2). These bands exist since

||Ni(x), Ni(y)|| ≥ ||x, y|| − 2
√
εLi ≥ Li/2− 2

√
εLi ≥ Li/4

Now for each pair of non-adjacent horizontal bands Ha and Hb, d(Ha, Hb) ≥ Li
8 . Draw a

bisecting segment (touching two sides of B) between Ha and Hb and place O( 1√
ε
) equally-

spaced Steiner points, say R, on the bisecting line in a way that the distance between any
two nearby Steiner points is Li

√
ε (see Figure 2(a)). For each point r ∈ R, and each net point

pi ∈ NB ∩ (Ha ∪Hb), we apply the construction of Corollary 7 to r, the set of endpoints of
Pi inclosed in circle B(pi,

√
εLi) and Si−1; let Sa,b(pi) be the obtained geometric graph (see

Figure 2(b)). Note that d(r,B(pi,
√
εLi)) = Ω(Li). Thus, by Corollary 7, w(Sa,b(pi)) = O(Li)

and that:

dSi−1∪Sa,b(pi)(r, q) ≤ (1 + 13ε)||r, q|| (5)

for any q ∈ B(pi,
√
εLi) ∩ P . Let Sa,b(r) = ∪pi∈NB∩(Ha∪Hb)Sa,b(pi). It holds that

w(Sa,b(r)) ≤ O(Li)|NB ∩ (Ha ∪Hb)|.

Let Sa,b = ∪r∈RSa,b(r). Then, we have:

w(Sa,b) ≤ O(Li · |R| · |NB ∩ (Ha ∪Hb)|) = O( Li√
ε
|NB ∩ (Ha ∪Hb)|) (6)

We apply the same construction for every pair of non-adjacent vertical bands. We then let
SB be the union of all Sa,b for every pair of non-adjacent horizontal/vertical bands Ha, Hb.
It holds that:

w(SB) = O(Li · |R| · |NB |) = O(Li|NB |√
ε

) (7)

since there are only O(1) pairs of bands. To bound the stretch, let (x, y) be a pair in Pi
whose endpoints are in B. W.l.o.g, assume that Ha, Hb are two non-adjacent horizontal
bands that contain Ni(x) and Ni(y), respectively. Let v be the intersection of segment xy
and the bisecting line L of Ha, Hb (see Figure 2(b)). Let r ∈ R be the closest Steiner point
to v in L and z be the projection of r on xy. Observe that ||z, x||, ||z, y|| ≥ Li

16 − ||z, v|| ≥
Li/16−

√
εLi ≥ Li/32 when ε� 1. We have:

||r, x||+ ||r, y|| =
√
||x, z||2 + ||r, z||2 +

√
||y, z||2 + ||r, z||2

≤ ||x, z||

√
1 + εL2

i

||x, z||2
+ ||y, z||

√
1 + εL2

i

||y, z||2
since ||r, z|| ≤

√
εLi

≤ ||x, z||
√

1 + 1024ε+ ||y, z||
√

1 + 1024ε since ||x, z||, ||y, z|| ≥ Li/32
≤ ||x, z||(1 + 512ε) + ||y, z||(1 + 512ε) = (1 + 512ε)||x, y||
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Thus, by Equation 5, we have:

dSB∪Si−1(x, y) ≤ (1 + 13ε)(||r, x||+ ||r, y||) = (1 + 13ε)(1 + 512ε)||x, y|| = (1 +O(ε))||x, y||

Thus, the stretch is (1 + cε) for a sufficiently big constant c. C

Let Hi = ∪B∈BSB . Since each net point belongs to at most 4 subsquares in B by Claim 9,
and w(Hi) ≤ O( |Ni|Li√

ε
) by Claim 10, it holds that:

w(Hi) = O( Li√
ε

w(MST)
Li
√
ε

) = O(w(MST)
ε

) (8)

by Claim 8 as desired. J

4 A Linear Time Construction

In this section, we assume that ∆ = O(nc) for some constant c, and ε is a constant. We use
the same model of computation used by Chan [20]: the real-RAM model with Θ(logn) word
size and floor function. We will use Oε notation to hide a polynomial factor of 1

ε . Chan [20]
showed that:

I Theorem 11 (Step 4 in [20]). Given a poin set P ∈ Rd with spread ∆ = O(nc) for constant
d and c, a (1 + ε)-spanner of P can be constructed in Oε(P ) time.

We will use a construction of an r-net for a point set P for any r in time O(n). Such a
construction was implicit in the work of Har-Peled [48] which was made explicit by Har-Peled
and Raichel (Lemma 2.3 [50]).

I Lemma 12 (Lemma 2.3 and Corollary 2.4 [50]). Given r ≥ 1 and an n-point set P in Rd,
an r-net N of P can be constructed in O(n) time. Furthermore, for each net point p, one
can compute all the points covered by p in total O(n) time.

We first show that the spanner in Corollary 7 can be implemented in Oε(|X|) time.

B Claim 13. The single-source spanner H in Corollary 7 can be found in Oε(|X|) time.

Proof. First, we observe that the single source spanner in Lemma 6 can be constructed in
time Oε(|X|). This is because the grid W has size Oε(1) and the SLT tree from p to (a set
of O( 1√

ε
) grid points on) L can be constructed in Oε(1) time. The single-source spanner in

Corollary 7 uses a constant number of constructions construction in Lemma 6. Thus, the
total running time is Oε(|X|). C

Proof of Theorem 2. Our implementation will follow the construction in Section 3 ; we will
reuse notation in that section as well. Let K be a (1 + ε)-spanner H for P constructed in
time O(n) by Theorem 11. In our fast construction algorithm, instead of considering all
pairs of points P =

(
P
2
)
, we only consider the pairs corresponding to edges of H; there are

O(n) such pairs. Our algorithm has four steps:

Step 1. Partition pairs of endpoints in E(H) into at most O(log(∆)) sets P1, . . . ,Pdlog ∆e
where Pi is the set of pairs (x, y) such that ||x, y|| ∈ [2i−1, 2i). Let Li = 2i. This step
can be implemented in time O(|E(H)|) = Oε(n). The following steps are applied to each
i ∈ [1, dlog ∆e]. Let Pi be the set of endpoints of Pi. We observe that:

n∑
i=1
|Pi| ≤ 2

n∑
i=1
|Pi| = 2|E(H)| = O(n) (9)
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Step 2. Construct a (
√
εLi)-net Ni for Pi in O(|Pi|) time using the algorithm in Lemma 12.

Step 3. Compute a bounding square Q and divide it into (overlapping) subsquares
of length Θ(Li) each. Let B be the set of subsquares that contain at least one point
participating in the pairs Pi. Since there are only O(|Pi|) non-empty subsquares, B can
be computed in time O(|Pi|) by iterating over each point and check (in O(1) time) which
subsquare the point falls into. Here we use the fact that each floor operation takes O(1)
time.
Step 4. For each subsquare B ∈ B, we divide it into O(1) horizontal bands and vertical
bands of length Li/8. For each pair of non-adjacent (horizontal) bands Ha, Hb, construct
a set of O( 1√

ε
) Steiner points on the bisecting line between Ha and Hb as in Section 3.

For each Steiner point r and each net point p ∈ Ni ∩ (Ha ∩Hb), we apply Corollary 7 to
construct a single source spanner from r to a set of points B(p,

√
εLi) ∩ Pi; this step can

be implemented in time Oε(|B(p,
√
εLi)∩Pi|) by Claim 13. By Claim 9, the construction

in this step can be implemented in Oε(|Pi|) time. Our final spanner is the union of all
single source spanners in all subsquares in B.

The running time needed to implement Steps 2 to 4 is Oε(
∑
i=1 |Pi|) = Oε(n) by

Equation 9. The same analysis in Section 3 gives O( log ∆
ε ) lightness. For stretch, we observe

that the stretch of the spanner for each edge of H is (1 +O(ε)). Thus, the stretch for every
pair of points in P is (1 + ε)(1 + O(ε)) = (1 + O(ε)). We can recover stretch (1 + ε′) by
setting ε′ = ε

c where c is the constant behind big-O. J

5 Steiner Spanners in High Dimension

In this section, we a light Steiner spanner for a point set P ∈ Rd with spread ∆ as in
Theorem 3. We rescale the metric so that every edge in

(
P
2
)
has weight at least 1

ε . Let MST
be the minimum spanning tree of P . We subdivide each MST edge of length > 1, by placing
Steiner points greedily, in a way that each new edge has length at least 1/2 and at most 1.
Let K be the set of Steiner points. We observe that:

w(MST) = Θ(|P |+ |K|) (10)

Let δ > 1 be some parameter and Li = δ
εi . Let Eδ = {E1, . . . , Em} be the set of edges such

that

Ei = {e|e ∈
(
P

2

)
∧ w(e) ∈ (Li/2, Li]} (11)

where m = dlog 1
ε
(∆/(εδ))e ≤ dlog 1

ε
∆e + 1. If an edge e ∈ Ei for some Ei ∈ Eδ, we will

abuse notation by saying that e ∈ Eδ. The main focus of this section is to show that:

I Lemma 14. There is a Steiner spanner that preserves distances between the endpoints of
edges in Eδ with weight Õ(ε−(d+1)/2 + (δ + ε−2) log 1

ε
∆)w(MST).

We will show below that Lemma 14 implies Theorem 3.

Proof of Theorem 3. We assume that 1
ε is a power of 2. We partition the interval [1, ε) into

J = log2( 1
ε ) intervals [1, 2), . . . , [2J−1, 2J). For each fixed j ∈ [1, J ], let δi = 2j , and Eδj be

the set of edges with δ = δj in the definition of Eδ. Recall that we scale the metric so that
every edge in

(
P
2
)
has weight at least 1

ε . Thus,
(
P
2
)

= ∪Jj=1Eδj
Observe that δj ≤ 1

ε for all j ∈ [1, J ]. By Lemma 14, there exists a Steiner spanner Sj
with weight Õ(ε−(d+1)/2 + (ε−2 log 1

ε
∆)w(MST) preseving distances between endpoints of

edges in Eδj up to a (1 + ε) factor. Then S = ∪Ji=1Sj is a Steiner (1 + ε)-spanner with weight
Õ(ε−(d+1)/2 + ε−2 log ∆)w(MST). J
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We now focus on constructing a Steiner spanner in Lemma 14. We will use the following
Steiner spanner construction as a black box.

I Theorem 15 (Theorem 1.3 [59]). For a given point set P , there is a Steiner (1+ε)-spanner,
denoted by STP(P ), with Õ(ε−(d−1)/2)|P | edges that preserves pairwise distances of points in
P up to a (1 + ε) factor.

We will rely on a cover tree to construct a Steiner spanner. Let c be a sufficiently big
constant chosen later (c = 20).

I Definition 16 (Cover tree). A cover T for point set P ∪K with (m+ 1) levels has each
node associated with a point of P such that (a) level-0 of T is the point set P ∪K, (b) level-i
of T is associated with a (cεLi)-cover Ni of P and (c) Nm ⊆ Nm−1 ⊆ . . . ⊆ N0.

A point p may appear in many levels of a cover tree T . To avoid confusion, we denote
by (p, i) the copy of p at level i, and we still call (p, i) a point of P ∪K. For each point
(p, i), we denote by child(p, i) and desc(p, i) the set of children and descendants of (p, i) in T ,
respectively. Note that desc(p, i) includes (p, i).

We will construct the Steiner spanner level by level, starting from level 1. At every level,
we will add a certain set of edges to Esp. We then charge the weight of a subset of the edges
to a subset of uncharged points of P ∪K; initially, every point of P ∪K is uncharged. To
decide which uncharged points we will charge to at level i, we consider a geometric graph Hi

where V (Hi) = Ni and there is an edge between two points (p, i) 6= (q, i) (of weight ||p, q||) in
Hi if there exists at least one e ∈ Ei between two descendants of (p, i) and (q, i), respectively.
We say a cover point (p, i) has high degree if its degree in Hi is at least 4c

ε . At level i, we only
charge to uncharged points which are descendants of high degree cover points. The intuition
is that high cover points have many descendants. This leads to a notion of a charging cover
tree. We call a cover tree a charging cover tree for Eδ if for all level i ≥ 1,
(1) Each point (p, i) has at least εLi descendants that are uncharged at level less than i.
(2) Up to εLi/2 uncharged descendant of each high-degree cover point (p, i) can be charged

at level i. No descendant of low-degree points is charged at level i.

We show how to construct a charging cover tree in Appendix 5.4. We now show that
given a charging cover tree, we can construct a Steiner spanner with the lightness bound in
Lemma 14. Let T be such a charging cover tree. We define a set of edges ET as follows:

ET = {(p, q)|(p ∈ child(q, i) ∨ q ∈ child(p, i)) for some i} (12)

We abuse notation by denoting ET the graph induced by the set of edges in ET .

B Claim 17. w(ET ) = O(δ+ ε−1 log 1
ε

∆)w(MST)) and for any p and every x 6= y ∈ desc(p, i),
dET (x, y) ≤ 4cεLi.

Proof. Edges in ET can be partitioned according to levels where an edge is at level i if it
connects a point (p, i) and its parent. Observe that at level 0, the total edge weight is at most
cδ times the number of points and hence, the total weight is O(δ|K ∪ P |) = O(δw(MST)) by
Equation 10. At higher level, we observe that the total weight of edges of ET at level i ≥ 1 is
at most Li|Ni|, and that Ni ≤ |K∪P ||εLi| since each point (p, i) has |desc(p, i)| ≥ εLi by property
(1) of the charging tree. Thus, the total weight of edges Et at level at least 1 is at most:

m∑
i=1

|K ∪ P |
ε

= m
|K ∪ P |

ε
= O(ε−1 log 1

ε
∆|K ∪ P |) = O(ε−1 log 1

ε
∆)w(MST)
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This implies the weight bound of ET . We now bound the distance between x 6= y ∈ desc(p, i).
Let x = v0, v1, . . . , vk = p be the (unique) path from x to p. By construction, ||vi−1, vi|| ≤
vivi+1
ε for i ∈ [1, k − 1]. This implies:

dET (x, p) = ||p, vk−1||
k−1∑
i=0

εi ≤ ||p, vk−1||
1− ε ≤ 2||p, vk−1|| = 2cεLi

when ε ≤ 1
2 . Similarly, dET (y, p) ≤ 2cεLi and hence dET (x, y) ≤ 4cεLi. C

Claim 17 implies that the descendants of any level i node in a charging cover tree form a
subgraph of diameter at most O(cεLi). Let Esp be the set of edges that will be our final
spanner. Initially, Esp = ET ∪MST. We will abuse notation by denoting Esp the graph
induced by edge set Esp.

5.1 Spanner construction at level i

Recall that Hi is a geometric graph where V (Hi) = Ni and there is an edge between two
points (p, i) 6= (q, i) in Hi if there exists at least one e ∈ Ei between two descendants of (p, i)
and (q, i), respectively. Recall that a high degree point (p, i) has at least 4c

ε neighbors in Hi.
We proceed in two steps.

Step 1. For every low degee point (p, i), we add all incident edges of (p, i) in Hi to Esp.
Step 2. Let Q be the set of high degree points in Ni. We add to Esp the set of edges
of STP(Q). We take from each high degree cover point (p, i) exactly εLi/2 uncharged
descendants and let X be the set of these uncharged points. We charge the cost of STP(Q)
equally to all points in X and mark them charged. This charging is possible by property
(2) of T .

5.2 Bounding the stretch
We will show that the stretch is (1 + (48c+ 1)ε). We can recover stretch (1 + ε′) by setting
ε′ = ε

48c+1 .
Observe by construction that for every edge e ∈ Hi, the stretch of e in Esp is at most

(1 + ε). Recall that for every edge (u, v) ∈ Ei, there is an edge (p, q) ∈ E(Hi) such that
u ∈ desc(p, i), v ∈ desc(q, i). By Claim 17, there is a path between u and v in Esp of length
at most dEsp(p, q) + 8cεLi. By triangle inequality, ||p, q|| − 2cεLi ≤ ||u, v|| ≤ ||p, q||+ 2cεLi.
Thus, we have:

dEsp(u, v)
||u, v||

≤
dEsp(p, q) + 8cεL2

||p, q|| − 2cεLi
=
dEsp(p, q)
||p, q||

+
(dEsp(p, q) + 4||p, q||)2cεLi
||p, q||(||p, q|| − 2cεLi)

≤
dEsp(p, q)
||p, q||

+ 12cεLi
||p, q|| − 2cεLi

since dEsp(p, q) ≤ 2||p, q||

≤
dEsp(p, q)
||p, q||

+ 48cε ≤ 1 + (48c+ 1)ε

The penultimate inequality follows from the fact that

||p, q|| − 2cεLi ≥ ||u, v|| − 4cεLi ≥ Li/2− 4cεLi ≥ Li/4

when ε� 1
c .
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5.3 Bounding w(Esp)

Observe that the total number of low degree points in Ni is at most |K∪P |εLi
since each low

degree point has at least εLi (uncharged) descendants by property (1) of charging tree T . By
triangle inequality, each edge of Hi has weight at most Li + 2cεLi ≤ 3Li when ε < 1

c . Thus,
the total weight of edges added to Esp in Step 1 is bounded by:

3Li · 4c
ε
|{p|p ∈ Ni and p has low degree}| = O(Li

ε

|K ∪ P |
εLi

) = O( 1
ε2

)w(MST)

by Equation 10. Thus, the total weight of the edges added to Esp in Step 1 over m levels is
O(ε−2 log 1

ε
∆)w(MST). Note here that m ≤ dlog 1

ε
∆e+ 1.

We now bound the total weight of the edges added to Esp in Step 2 over m levels.
Since each edge of Hi has weight at most 3Li, each edge of STP(Q) has weight a most
(1 + ε)3Li ≤ 6Li. By Theorem 15,

w(STP(Q)) = Õ(ε−(d−1)/2)|Q|6Li = Õ(ε−(d−1)/2+o(1))|Q|Li
Thus, in Step 2, each uncharged point is charged at most:

Õ(ε−(d−1)/2)|Q|Li
|Q|εLi/2

= Õ(ε−(d+1)/2) (13)

This implies the total weight of the edges added to Esp in Step 2 over all levels is
Õ(ε−(d+1)/2)(|P ∪K|) = Õ(ε−(d+1)/2)w(MST). Together with Claim 17, we conclude that:

w(Esp) = Õ(ε−(d+1)/2 + (δ + ε−2) log 1
ε

∆)w(MST)

This completes the proof of Lemma 14.

5.4 Constructing a Charging Cover Tree
The main difficulty is to guarantee property (1) in constructing a charging cover tree; for
property (2) at each level i, we simply charge to exactly εLi/2 uncharged descendants of
each high degree cover point.

A natural idea is to guarantee that each cover point has 1
ε children. Then inductively,

if each child of a cover point (p, i) has at least εLi−1/2 uncharged descendants after the
charging at level i− 1, we can hope that p has at least 1

ε εLi−1 = εLi uncharged descendants.
There are two issues with this idea: (a) if at least one child, say (q, i− 1), of (p, i) has high
degree in the graph Hi−1, up to εLi−1/2 uncharged points in desc(q, i− 1) were charged at
level i− 1 by property (2), and thus, (q, i− 1) only contributes εLi−1

2 uncharged descendants
to (p, i); and (b) there may not be enough cover points at level i− 1 close to p as these points
and their descendants must be within distance cεLi from p.

In our construction, we resolve both issues by picking a cover point in a way that the
total number of uncharged descendants of its children is at least εLi. We do so by having a
more accurate way to track the number of uncharged descendants of a cover point, instead
of simply relying on the lower bound εLi of uncharged descendants. Specifically, denote by
D(X) the diameter of a point set X. We will construct a charging cover tree in a way that
the following invariant is maintained at all levels.

Strong Charging Invariant: (SCI)
Each point (p, i) has at least max(εLi,D(desc(p, i))+1) uncharged descendants (before
the charging happened at level i).

Clearly, SCI implies property (1) of T . We begin by constructing the level-1 cover. Recall
that MST edges have weight at most 1 and at least 1

2 , and that δ ≥ 1.
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Level 1
We construct level-1 cover points N1 by greedily breaking MST edges into subtrees of diameter
at least δ and at most 3δ + 2 ≤ 5δ. Let X be such a subtree of MST with diameter dX ; X
will have at least δ points since MST edge has weight at most 1. We pick any point, say
p ∈ X, to be a level-1 cover point, and make other points in X become p’s children; p will
have at least δ children (uncharged at level 0). Recall that εL1 = δ. Since each MST edge
has weight at most 1, the number of descendants of (p, 1) is at least:

dX + 1 ≥ max(εL1,D(desc(p, 1)) + 1)

Thus, SCI holds for this level.

Level i + 1
Recall Hi is a graph with vertex set Ni. We construct a cover Ni+1 in three steps A, B
and C.

Step A. For each high degree point p (with at least 4c
ε unmarked neighbors in Hi), we

pick p to Ni+1 andmake its unmarked neighbors become its children. We then mark p
and all of its neighbors. For each remaining unmarked high degree point x in Hi, at least
one of its neighbors, say q, must be marked before. We make x become a child of q’s
parent.

The intuition of the construction in Step A is that (p, i+1) picked at this step has at least 4c
ε

children. Since at least (εLi)/2 descendants of each child of (p, i) remain uncharged after level
i, the total number of uncharged descendants of (p, i+ 1) is 4c

ε
εLi
2 = 2cLi = 2cεLi+1 > εLi+1.

Furthermore, since every high degree point is marked in this step, points in subsequent steps
have low degree and hence no uncharged descendant of these points is charged at level i by
property (2) of charging cover trees.

Let W be the set of remaining points in Ni. We construct a forest F from W as follows.
The vertex set of F is W , and there is an edge between two vertices p, q of F if there is an
MST edge, called the source of the edge, connecting a point in desc(p) and a point in desc(q).
We set the weight of each edge in F to be the weight of the source edge. Note that F is not
a geometric graph. We observe that:

I Observation 18. For every connected component C ∈ F , there must be a point p ∈ C and
a point q marked in Step A such that there is an MST edge between a descendant of (p, i)
and a descendant of (p, i), except when there is no point marked in Step A (and F is a tree
in this case).

Proof. The observation follows from the fact that MST spans P ∪K. J

We define the weight on each vertex p of F to be w(p) = D(desc(p, i)), and the vertex-
weight of a path P , denoted by vw(P ), of F to be the total weight of vertices on the path.
We define the absolute weight of P , denoted by aw(P ), to be the total vertex and edge weight
of P . Since each MST edge has weight at most 1 and each vertex has weight at least 1,

aw(P ) ≤ 2vw(P ) (14)

The vertex-diameter of a subtree C, denoted by VD(C), of F is defined to be the vertex-
weight of the path of maximum vertex-weight in the subtree. The absolute diameter of C,
denoted by AD(C), is defined similarly but w.r.t absolute weight.
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Step B. For each component C of F of vertex-diameter at least Li, we greedily break
C into sub-trees of vertex-diameter at least Li and at most 3Li. For each subtree of
C, choose an arbitrary point p to be a level-(i+ 1) cover point and make other points
become p’s children.
Step C. For each component C of F of vertex-diameter at most Li, by Observation 18,
there must be at least one MST connecting a point in desc(u, i) for some u ∈ C to a point
in desc(v, i) for some point v marked in Step 1. We make all points in C become children
of v’s parent.

The following claim implies that Ni+1 is a (cεLi+1)-cover.

B Claim 19. For each point (p, i+ 1), D(desc(p, i+ 1)) ≤ cεLi+1 for c = 20.

Proof. Note that for each point (q, i), 1 ≤ D(desc(q, i)) ≤ 2cεLi since every point in desc(q, i)
is within distance cεLi from q.

First, consider the case that (p, i+ 1) is chosen in Step B. Then p and its children belong
to a subtree C of F of vertex-diameter at most 3Li. by Equation 14, AD(C) ≤ 2 · 3Li = 6Li.
Thus, for a point p ∈ Ni+1 selected in Step B, D(desc(p, i+ 1)) ≤ AD(C) ≤ 6Li.

We now consider the case where (p, i+ 1) is chosen in Step A. (There is no cover point at
level (i+ 1) selected in Step C.) Recall that each edge of Hi has length at most Li + 2cεLi
by the triangle inequality. Observe that after Step 1, for any (q, i) ∈ child(p, i+ 1), the hop
distance in Hi between (p, i) and (q, i) is at most 2, hence ||p, q|| ≤ 2(Li+2cεLi) = 2Li+4cεLi.
That implies, after Step A,

||p, x|| ≤ (2Li + 4cεLi) + cεLi = 2Li + 5cεLi for any x ∈ desc(p, i+ 1) (15)

In Step C, we add more points belonging to subtrees of F to child(p, i+ 1). Let C be any
of these subtrees. Since VD(C) ≤ Li, AD(C) ≤ 2Li. By construction, there exists a point
(v, i) ∈ C and a point (u, i) ∈ child(p, i+1) such that there is an MST edge e connecting a point
in desc(v, i) and a point in desc(u, i). Thus, the augmentation in Step C increases the distance
from p to the furthest point of desc(p, i+ 1) by at most w(e) + AD(C) ≤ 1 + 2Li ≤ 3Li.
This implies:

D(desc(p, i+ 1)) ≤ 2(2Li + 5cεLi + 3Li) ≤ 20Li

when ε < 1
c . C

To complete the proof of Lemma 14, it remains to show SCI for level (i+ 1).

B Claim 20. Each point (p, i+ 1) has at least max(εLi+1,D(desc(p, i+ 1) + 1) uncharged
descendants.

Proof. We first consider the case (p, i+ 1) is picked in Step B. Let X be the subtree of F
that p belongs to. Let P be a path of X of maximum absolute weight. By definition on
absolute weight, aw(P ) ≥ D(desc(p, i+ 1)). Since MST has length at most 1, we have:∑

q∈P
D(desc(q, i)) + |E(P )| ≥ aw(P ) ≥ D(desc(p, i+ 1))

By SCI for level i, we conclude that the number of uncharged descendants of (p, i+ 1) is at
least:∑

q∈P
(D(desc(q, i)) + 1) ≥ (

∑
q∈P

D(desc(q, i)) + |E(P )|) + 1 ≥ D(desc(p, i+ 1))) + 1
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To show that X has at least εLi+1 uncharged descendants, we observe by construction that X
has a path Q with vw(Q) ≥ Li. By definition of vertex-weight, vw(Q) =

∑
q∈Q D(desc(q, i)).

Thus, the total number of uncharged descendants of all q ∈ Q by SCI is at least:∑
q∈Q

(D(desc(q, i)) + 1) >
∑
q∈Q

D(desc(q, i)) ≥ Li = εLi+1

Thus, (p, i+ 1) has at least max(εLi+1,D(desc(p, i+ 1)) + 1) uncharged descendants.
It remains to consider the case (p, i+ 1) is picked in Step A. By construction, (p, i+ 1)

has at least 4c
ε children, and each has at least εLi−1/2 uncharged descendants by property

(2) of a charging cover tree. Note that D(desc(p, i+ 1)) ≤ cεLi+1 = cLi by Claim 19. Thus,
(p, i+ 1) has at least:

4c
ε

εLi
2 = 2cLi ≥ max(εLi+1,D(desc(p, i+ 1))) + cLi > max(εLi+1,D(desc(p, i+ 1)) + 1)

uncharged descendants as desired. C
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