126,473 research outputs found

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    Product line architecture recovery with outlier filtering in software families: the Apo-Games case study

    Get PDF
    Software product line (SPL) approach has been widely adopted to achieve systematic reuse in families of software products. Despite its benefits, developing an SPL from scratch requires high up-front investment. Because of that, organizations commonly create product variants with opportunistic reuse approaches (e.g., copy-and-paste or clone-and-own). However, maintenance and evolution of a large number of product variants is a challenging task. In this context, a family of products developed opportunistically is a good starting point to adopt SPLs, known as extractive approach for SPL adoption. One of the initial phases of the extractive approach is the recovery and definition of a product line architecture (PLA) based on existing software variants, to support variant derivation and also to allow the customization according to customers’ needs. The problem of defining a PLA from existing system variants is that some variants can become highly unrelated to their predecessors, known as outlier variants. The inclusion of outlier variants in the PLA recovery leads to additional effort and noise in the common structure and complicates architectural decisions. In this work, we present an automatic approach to identify and filter outlier variants during the recovery and definition of PLAs. Our approach identifies the minimum subset of cross-product architectural information for an effective PLA recovery. To evaluate our approach, we focus on real-world variants of the Apo-Games family. We recover a PLA taking as input 34 Apo-Game variants developed by using opportunistic reuse. The results provided evidence that our automatic approach is able to identify and filter outlier variants, allowing to eliminate exclusive packages and classes without removing the whole variant. We consider that the recovered PLA can help domain experts to take informed decisions to support SPL adoption.This research was partially funded by INES 2.0; CNPq grants 465614/2014-0 and 408356/2018-9; and FAPESB grants JCB0060/2016 and BOL2443/201

    Informatics Research Institute (IRIS) July 2002 newsletter

    Get PDF

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Surveying the factors that influence maintainability: research design

    Get PDF
    We want to explore and analyse design decisions that influence maintainability of software. Software maintainability is important because the effort expended on changes and fixes in software is a major cost driver. We take an empirical, qualitative approach, by investigating cases where a change has cost more or less than comparable changes, and analysing the causes for those differences. We will use this analysis of causes as input to following research in which the individual contributions of a selection of those causes will be quantitatively analysed
    corecore