6,981 research outputs found

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes

    Full text link
    Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Some interesting quantum codes are constructed to demonstrate their value.Comment: 33 pages including appendi

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Good Code Sets from Complementary Pairs via Discrete Frequency Chips

    Full text link
    It is shown that replacing the sinusoidal chip in Golay complementary code pairs by special classes of waveforms that satisfy two conditions, symmetry/anti-symmetry and quazi-orthogonality in the convolution sense, renders the complementary codes immune to frequency selective fading and also allows for concatenating them in time using one frequency band/channel. This results in a zero-sidelobe region around the mainlobe and an adjacent region of small cross-correlation sidelobes. The symmetry/anti-symmetry property results in the zero-sidelobe region on either side of the mainlobe, while quasi-orthogonality of the two chips keeps the adjacent region of cross-correlations small. Such codes are constructed using discrete frequency-coding waveforms (DFCW) based on linear frequency modulation (LFM) and piecewise LFM (PLFM) waveforms as chips for the complementary code pair, as they satisfy both the symmetry/anti-symmetry and quasi-orthogonality conditions. It is also shown that changing the slopes/chirp rates of the DFCW waveforms (based on LFM and PLFM waveforms) used as chips with the same complementary code pair results in good code sets with a zero-sidelobe region. It is also shown that a second good code set with a zero-sidelobe region could be constructed from the mates of the complementary code pair, while using the same DFCW waveforms as their chips. The cross-correlation between the two sets is shown to contain a zero-sidelobe region and an adjacent region of small cross-correlation sidelobes. Thus, the two sets are quasi-orthogonal and could be combined to form a good code set with twice the number of codes without affecting their cross-correlation properties. Or a better good code set with the same number codes could be constructed by choosing the best candidates form the two sets. Such code sets find utility in multiple input-multiple output (MIMO) radar applications

    Rational Design of DNA Sequences with Non-Orthogonal Binding Interactions

    Get PDF
    Molecular computation involving promiscuous, or non-orthogonal, binding interactions between system components is found commonly in natural biological systems, as well as some proposed human-made molecular computers. Such systems are characterized by the fact that each computational unit, such as a domain within a DNA strand, may bind to several different partners with distinct, prescribed binding strengths. Unfortunately, implementing systems of molecular computation that incorporate non-orthogonal binding is difficult, because researchers lack a robust, general-purpose method for designing molecules with this type of behavior. In this work, we describe and demonstrate a process for the rational design of DNA sequences with prescribed non-orthogonal binding behavior. This process makes use of a model that represents large sets of non-orthogonal DNA sequences using fixed-length binary strings, and estimates the differential binding affinity between pairs of sequences through the Hamming distance between their corresponding binary strings. The real-world applicability of this model is supported by simulations and some experimental data. We then select two previously described systems of molecular computation involving non-orthogonal interactions, and apply our sequence design process to implement them using DNA strand displacement. Our simulated results on these two systems demonstrate both digital and analog computation. We hope that this work motivates the development and implementation of new computational paradigms based on non-orthogonal binding
    • …
    corecore