7 research outputs found

    Imaging Formation Algorithm of the Ground and Space-Borne Hybrid BiSAR Based on Parameters Estimation from Direct Signal

    Get PDF
    This paper proposes a novel image formation algorithm for the bistatic synthetic aperture radar (BiSAR) with the configuration of a noncooperative transmitter and a stationary receiver in which the traditional imaging algorithm failed because the necessary imaging parameters cannot be estimated from the limited information from the noncooperative data provider. In the new algorithm, the essential parameters for imaging, such as squint angle, Doppler centroid, and Doppler chirp-rate, will be estimated by full exploration of the recorded direct signal (direct signal is the echo from satellite to stationary receiver directly) from the transmitter. The Doppler chirp-rate is retrieved by modeling the peak phase of direct signal as a quadratic polynomial. The Doppler centroid frequency and the squint angle can be derived from the image contrast optimization. Then the range focusing, the range cell migration correction (RCMC), and the azimuth focusing are implemented by secondary range compression (SRC) and the range cell migration, respectively. At last, the proposed algorithm is validated by imaging of the BiSAR experiment configured with china YAOGAN 10 SAR as the transmitter and the receiver platform located on a building at a height of 109 m in Jiangsu province. The experiment image with geometric correction shows good accordance with local Google images

    Analysis for Resolution of Bistatic SAR Configuration with Geosynchronous Transmitter and UAV Receiver

    Get PDF
    Bistatical SAR with geosynchronous illuminator and unmanned aerial vehicle receiver (GEO-UAV BiSAR) has significant potential advantages in the field of continuous local observation under a dangerous environment within nearly 24 h. Due to the extreme platform velocity differences, the ellipse orbital movement of GEOSAR makes this BiSAR configuration not like the conventional spaceborne BiSAR. In this paper, based on the orbital kinetic characteristic of GEOSAR, we theoretically analyze the variations of bistatic configuration effect on common azimuth coverage and coherent accumulated time. In addition, two-dimension the resolution is deduced by geometrical configuration on the basis of gradient method. The simulations show that the appropriate selection of initial bistatic configuration can restrain from the appearance of the dead zone in common coverage. And the image results are obtained by frequency domain RD based on Method of Series Reversion (MSR). It is shown that GEO-UAV BiSAR has the high resolution ability

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Opportunistic radar imaging using a multichannel receiver

    Get PDF
    Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver where one or both are moving. Besides the advantages of reduced procurement and maintenance costs, the receiving system can sense passively while remaining covert which offers obvious tactical advantages. In this work, spaceborne monostatic SARs are used as emitters of opportunity with a stationary ground-based receiver. The imaging mode of SAR systems over land is usually a wide-swath mode such as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to image a larger swath at the expense of degraded cross-range resolution compared to the conventional stripmap mode. In the bistatic geometry considered here, the signals from the sidelobes of the scanning beams illuminating the adjacent sub-swath are exploited to produce images with high cross-range resolution from data obtained from a SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem is rigorously formulated and solved using a Maximum A Posteriori estimation method providing enhanced cross-range resolution compared to that obtained by classical burst-mode SAR processing. This dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. As a comparison, a compressive sensing-based method is critically analysed and proves more sensitive to off-grid targets and only suited to sparse scene. The novel SAR imaging method is demonstrated using simulated data and real measurements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2, ENVISAT and Sentinel-1A. In addition, this thesis analyses the main technological issues in bistatic SAR such as the azimuth-variant characteristic of bistatic data and the effect of imperfect synchronisation between the non-cooperative transmitter and the receiver

    New applications of nonlinear chirp scaling in SAR data processing

    No full text
    IEEE Transactions on Geoscience and Remote Sensing395946-953IGRS
    corecore