245 research outputs found

    Doppler Radar for the Extraction of Biomechanical Parameters in Gait Analysis

    Full text link
    The applicability of Doppler radar for gait analysis is investigated by quantitatively comparing the measured biomechanical parameters to those obtained using motion capturing and ground reaction forces. Nineteen individuals walked on a treadmill at two different speeds, where a radar system was positioned in front of or behind the subject. The right knee angle was confined by an adjustable orthosis in five different degrees. Eleven gait parameters are extracted from radar micro-Doppler signatures. Here, new methods for obtaining the velocities of individual lower limb joints are proposed. Further, a new method to extract individual leg flight times from radar data is introduced. Based on radar data, five spatiotemporal parameters related to rhythm and pace could reliably be extracted. Further, for most of the considered conditions, three kinematic parameters could accurately be measured. The radar-based stance and flight time measurements rely on the correct detection of the time instant of maximal knee velocity during the gait cycle. This time instant is reliably detected when the radar has a back view, but is underestimated when the radar is positioned in front of the subject. The results validate the applicability of Doppler radar to accurately measure a variety of medically relevant gait parameters. Radar has the potential to unobtrusively diagnose changes in gait, e.g., to design training in prevention and rehabilitation. As contact-less and privacy-preserving sensor, radar presents a viable technology to supplement existing gait analysis tools for long-term in-home examinations.Comment: 13 pages, 9 figures, 2 tables, accepted for publication in the IEEE Journal of Biomedical and Health Informatics (J-BHI

    Toward Unobtrusive In-home Gait Analysis Based on Radar Micro-Doppler Signatures

    Full text link
    Objective: In this paper, we demonstrate the applicability of radar for gait classification with application to home security, medical diagnosis, rehabilitation and assisted living. Aiming at identifying changes in gait patterns based on radar micro-Doppler signatures, this work is concerned with solving the intra motion category classification problem of gait recognition. Methods: New gait classification approaches utilizing physical features, subspace features and sum-of-harmonics modeling are presented and their performances are evaluated using experimental K-band radar data of four test subjects. Five different gait classes are considered for each person, including normal, pathological and assisted walks. Results: The proposed approaches are shown to outperform existing methods for radar-based gait recognition which utilize physical features from the cadence-velocity data representation domain as in this paper. The analyzed gait classes are correctly identified with an average accuracy of 93.8%, where a classification rate of 98.5% is achieved for a single gait class. When applied to new data of another individual a classification accuracy on the order of 80% can be expected. Conclusion: Radar micro-Doppler signatures and their Fourier transforms are well suited to capture changes in gait. Five different walking styles are recognized with high accuracy. Significance: Radar-based sensing of human gait is an emerging technology with multi-faceted applications in security and health care industries. We show that radar, as a contact-less sensing technology, can supplement existing gait diagnostic tools with respect to long-term monitoring and reproducibility of the examinations.Comment: 11 pages, 6 figure

    Detection of Gait Asymmetry Using Indoor Doppler Radar

    Full text link
    Doppler radar systems enable unobtrusive and privacy-preserving long-term monitoring of human motions indoors. In particular, a person's gait can provide important information about their state of health. Utilizing micro-Doppler signatures, we show that radar is capable of detecting small differences between the step motions of the two legs, which results in asymmetric gait. Image-based and physical features are extracted from the radar return signals of several individuals, including four persons with different diagnosed gait disorders. It is shown that gait asymmetry is correctly detected with high probability, irrespective of the underlying pathology, for at least one motion direction.Comment: 6 pages, 5 figures, 4 tables; accepted at the IEEE Radar Conference 2019, Boston, MA, US

    RF Sensing for Continuous Monitoring of Human Activities for Home Consumer Applications

    Full text link
    Radar for indoor monitoring is an emerging area of research and development, covering and supporting different health and wellbeing applications of smart homes, assisted living, and medical diagnosis. We report on a successful RF sensing system for home monitoring applications. The system recognizes Activities of Daily Living(ADL) and detects unique motion characteristics, using data processing and training algorithms. We also examine the challenges of continuously monitoring various human activities which can be categorized into translation motions (active mode) and in-place motions (resting mode). We use the range-map, offered by a range-Doppler radar, to obtain the transition time between these two categories, characterized by changing and constant range values, respectively. This is achieved using the Radon transform that identifies straight lines of different slopes in the range-map image. Over the in-place motion time intervals, where activities have insignificant or negligible range swath, power threshold of the radar return micro-Doppler signatures,which is employed to define the time-spans of individual activities with insignificant or negligible range swath. Finding both the transition times and the time-spans of the different motions leads to improved classifications, as it avoids decisions rendered over time windows covering mixed activities.Comment: 12 page

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Elderly care: activities of daily living classification with an S band radar

    Get PDF
    Falls in the elderly represent a serious challenge for the global population. To address it, monitoring of daily living has been suggested, with radar emerging to be a useful platform for it due to its various benefits with acceptance and privacy. Here, we show results from the use of an S band radar for activity detection and the importance of selecting specific frequency bins to improve its suitability for human movement classification. The use of feature selection to improve detection of key activities such as falls has been presented. Initial results of 65% are improved to 85% and further to 90% with the aforementioned methods

    A multi-sensory approach for remote health monitoring of older people

    Get PDF
    Growing life expectancy and increasing incidence of multiple chronic health conditions are significant societal challenges. Different technologies have been proposed to address these issues, detect critical events, such as stroke or falls, and monitor automatically human activities for health condition inference and anomaly detection. This paper aims to investigate two types of sensing technologies proposed for assisted living: wearable and radar sensors. First, different feature selection methods are validated and compared in terms of accuracy and computational loads. Then, information fusion is applied to enhance activity classification accuracy combining the two sensors. Improvements in classification accuracy of approximately 12% using feature level fusion are achieved with both support vector machine s (SVMs) and k-nearest neighbor (KNN) classifiers. Decision-level fusion schemes are also investigated, yielding classification accuracy in the order of 97%-98%

    Non-Intrusive Gait Recognition Employing Ultra Wideband Signal Detection

    Get PDF
    A self-regulating and non-contact impulse radio ultra wideband (IR-UWB) based 3D human gait analysis prototype has been modeled and developed with the help of supervised machine learning (SML) for this application for the first time. The work intends to provide a rewarding assistive biomedical application which would help doctors and clinicians monitor human gait trait and abnormalities with less human intervention in the fields of physiological examinations, physiotherapy, home assistance, rehabilitation success determination and health diagnostics, etc. The research comprises IR-UWB data gathered from a number of male and female participants in both anechoic chamber and multi-path environments. In total twenty four individuals have been recruited, where twenty individuals were said to have normal gait and four persons complained of knee pain that resulted in compensated spastic walking patterns. A 3D postural model of human movements has been created from the backscattering property of the radar pulses employing understanding of spherical trigonometry and vector fields. This subjective data (height of the body areas from the ground) of an individual have been recorded and implemented to extract the gait trait from associated biomechanical activity and differentiates the lower limb movement patterns from other body areas. Initially, a 2D postural model of human gait is presented from IR-UWB sensing phenomena employing spherical co-ordinate and trigonometry where only two dimensions such as, distance from radar and height of reflection have been determined. There are five pivotal gait parameters; step frequency, cadence, step length, walking speed, total covered distance, and body orientation which have all been measured employing radar principles and short term Fourier transformation (STFT). Subsequently, the proposed gait identification and parameter characterization has been analysed, tested and validated against popularly accepted smartphone applications with resulting variations of less than 5%. Subsequently, the spherical trigonometric model has been elevated to a 3D postural model where the prototype can determine width of motion, distance from radar, and height of reflection. Vector algebra has been incorporated with this 3D model to measure knee angles and hip angles from the extension and flexion of lower limbs to understand the gait behavior throughout the entire range of bipedal locomotion. Simultaneously, the Microsoft Kinect Xbox One has been employed during the experiment to assist in the validation process. The same vector mathematics have been implemented to the skeleton data obtained from Kinect to determine both the hip and knee angles. The outcomes have been compared by statistical graphical approach Bland and Altman (B&A) analysis. Further, the changes of knee angles obtained from the normal gaits have been used to train popular SMLs such as, k-nearest neighbour (kNN) and support vector machines (SVM). The trained model has subsequently been tested with the new data (knee angles extracted from both normal and abnormal gait) to assess the prediction ability of gait abnormality recognition. The outcomes have been validated through standard and wellknown statistical performance metrics with promising results found. The outcomes prove the acceptability of the proposed non-contact IR-UWB gait recognition to detect gait

    3D Gait Abnormality Detection Employing Contactless IR-UWB Sensing Phenomenon

    Get PDF
    Gait disorder diagnosis and rehabilitation is one area where human perception and observation are highly integrated. Predominantly, gait evaluation, comprises technological devices for gait analysis such as, dedicated force sensors, cameras, and wearable sensor based solutions, however they are limited by insufficient gait parameter recognition, post processing, installation costs, mobility, and skin irritation issues. Thus, the proposed study concentrates on the creation of a widely deployable, noncontact and non-intrusive gait recognition method from impulse radio ultra wideband (IR-UWB) sensing phenomenon, where a standalone IR-UWB system can detect gait problems with less human intervention. A 3D human motion model for gait identification from IR-UWB has been proposed with embracing spherical trigonometry and vector algebra to determine knee angles. Subsequently, normal and abnormal walking subjects were involved in this study. Abnormal gait subjects belong to the spastic gait category only. The prototype has been tested in both the anechoic and multipath environments. The outcomes have been corroborated with a simultaneously deployed Kinect Xbox sensor and supported by statistical graphical approach Bland and Altman (B&A) analysis
    corecore