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Abstract: Falls in the elderly represent a serious challenge for the global population. To address it, monitoring of daily living has
been suggested, with radar emerging to be a useful platform for it due to its various benefits with acceptance and privacy. Here,
we show results from the use of an S band radar for activity detection and the importance of selecting specific frequency bins to
improve its suitability for human movement classification. The use of feature selection to improve detection of key activities such
as falls has been presented. Initial results of 65% are improved to 85% and further to 90% with the aforementioned methods.

1 Introduction
Falls are challenges both for public health and society worldwide,
and especially in Europe, due to an ageing population. Health
dependency rate in France will skyrocket based on the
demographic estimates for the next 40 years [1]. The number of
people over 60 will increase by 10.4 million (80% extra) between
2007 and 2060 reaching the number of 23.6 million. The number of
people over 75 will increase from 5.2 million in 2007 to 11.9
million in 2060, and 1.3 million to 5.4 million for people over 85.
The transformation of society and budget cuts for health services
are straining the healthcare sustainability with lifestyle-related
diseases, increasing urbanisation, and demand for elderly care.
Caring for dependent or at high risk is a major economic and
societal issue. France has over 1.1 million dependent and at-risk
individuals, with an estimated growth of 2%/year by 2040. Thus, 2
million people will need support in 2020 [2]. Health technologies
are an important, dynamic, and high added-value market,
especially for risk prevention estimated in France at 6.7 billion
euros in 2005 [3]. It includes medical devices, technical assistance,
medical benefits, and domestic help [4].

This favourable economic situation, combined with recent
advances in the field of ICT, sensor networks, and device
miniaturisation, enables the development of new technological
solutions for prevention (identification of potential risks) and for
situational detection (falls), particularly in the context of
specialised institutions. Note the use of these technologies in
medical monitoring does not yet have legal and ethical
frameworks. Many questions remain unanswered, including their
use and reliability, the confidentiality level of the data exchanged,
and the social acceptability [5].

According to the World Health Organisation (WHO), falls are a
major public health problem, over 650,000 fatal falls are recorded
each year [6, 7]. They are the second leading cause of unintentional
injury death in the world after deaths from road traffic injuries.
WHO [6] reports that 28–35% of people aged over 65 fall every
year, and increases to 32–42% for people over 70. The frequency
of falls increases with age and the level of frailty. Seniors living in
retirement homes fall more often than those in community do. 30–
50% of people living in long-term care facilities die each year, and
40% of them have experienced recurrent falls. Worldwide, people
over 60 are the most affected with a high death rate. More than
37.3 million falls each year are serious enough to require medical
attention. Although it does not systematically result in death, fall

victims most often have a physical disability requiring long-term
care or having to be placed in a specialised institutions [8].

In France, falls are responsible for >12,000 deaths a year [9]. If
they do not lead to death, they are disabling with a certain loss of
autonomy. 5% of falls result in fractures of the humerus, wrist or
pelvis. 2% of falls result in a broken hip (55,000 in France/year). In
the elderly, a ‘benign’ fall may be complicated and life threatening,
but also functional. Other serious injuries (e.g. head, internal
injuries, and lacerations) occur in ∼10% of cases. Some injuries
related to a fall are fatal. About 5% of seniors with hip fractures die
during hospitalisation. The overall mortality in the 12 months
following a hip fracture varies from 18 to 33%. Totally, 50% of the
elderly who fall cannot get up without help. Staying on the ground
over 2 h after a fall increases the risk of dehydration, pressure
ulcers, rhabdomyolysis, hypothermia, and pneumonia [10]. Even
without direct injury, 50% of people who spent a long time on the
ground [6] (over 1 h) following a fall died within 6 months of the
incident [11].

Inequalities in healthcare in urban and rural areas are
multiplying with medical deserts in France, and the closures of
small hospitals and of certain services in rural areas. Health
infrastructures are not ready to handle the wave of elderly people
by 2050. Critical events (falls, stroke etc.) are both serious and
costly. Physical/cognitive decline if detected early allows better
management of the symptoms and consequences of the disease,
which lightens the weight of someone's institutionalisation on the
infrastructure and keep people autonomous longer in their own
homes [8].

The cost of trauma from falls is important [6]. For persons over
65, the average cost per injury due to a fall for the health system of
Finland and Australia is $3611 and $1049, respectively. According
to Canadian data, the implementation of effective prevention
strategies, lowering the incidence of fall by 20%, could result in a
net saving of over $120 million per year. Tree factors directly
affect the cost of a fall: its consequences, the pathologies
responsible, and the recurrence.

Early detection of these factors will reduce the potential number
of falls [7]. The issue of monitoring indoor activities was addressed
by several research projects, with the aim of reliably discriminating
falls against other activities, and more generally analysing the daily
activities of the subjects [12].
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2 Sensing modalities and machine learning
2.1 Sensing modalities

The automatic detection of postures has given rise in recent years
to intense research activity and major economic spin-offs. Kinect
3D sensors have made it possible to change the paradigm in the
field by offering the possibility of taking into account depth
information (3D), and thus to discriminate more effectively
different types of human movements. Today, most of these
measurements and motion analysis systems are found in virtual
animation (walking simulation) as well as in the biomechanical and
medical fields [13]. They enable studying pathology detection
problems, analysing human motion, or understanding the kinematic
mechanisms of walking to be reproduced in humanoid robots. The
academic competitions – Challenge – recently organised on this
theme show the limitations of current sensors, especially for the
recognition of posture in various situations and the falls in deficient
people.

Current systems can be grouped into three categories;
wearables, remote, and hybrid. Numerous wearables have been
proposed for the surveillance of people and specifically for fall
detection [12, 14, 15] over the last 30 years. These include portable
devices such as pedometers [16], accelerometers [17], gyroscopes
and panic pushbuttons [18], inertial sensors such as smartphones,
magnetic sensors [19] and infrared, vibratory, acoustic [20].
Although these devices give good results [21] on fall identification
(98%), most of these wearables solutions suffer from limiting
factors [8]:

i. Must be worn (depends on user compliance or thinking about it
if you wake up at night to go to the bathroom).

ii. Easily broken if they fall, get a shock or if someone sits on it.
iii. Need to be recharged (difficult for patients with dementia).
iv. Stigmatising for people.
v. Respect for privacy.

Monitoring systems are integrated in the user's place of life: video
cameras [13, 22], RGBI-D sensors [22–26] and radars, or a
combination of these systems. In [27, 28], a complete apartment
has been equipped with PIR motion sensors, gas stove sensors,
sensors in the bed, floor sensors etc. … and gives good activity
diagrams of everyday life. However, they are not able to give finer
information on gait analysis for change detection and require many
changes for an installation or readjustment of sensors in their
home. In [13], a thorough review of video cameras and radar
technologies for assisted living is proposed. For radar and RGBI-D
systems, open challenges remain in deploying and using these
systems in practical scenarios at home or in specialised institutions:

• In the case of cameras [13], the challenges remain occlusions
(dead zones), night-time operation, 3D dead zones, accuracy,
camera resolution, and respect for privacy. Monitoring people in
their daily lives poses a real problem of confidentiality.
Depending on the sensor, the perception of intrusion and respect
for privacy are different.

• For radar systems [11], the challenges are multipath, strong
scatterers, emission regulations, and mutual interference.

Although there are more technological challenges with radar, the
fact that there is no legal problem regarding image rights and no
image of anyone is taken, thus respecting privacy facilitates the
acceptance of end users and investors. For the reasons mentioned
above, the radar mode is an interesting research field still untapped
in specialised environment.

2.2 Radar and machine learning for activities of daily living

Radar is considered an important technology for health monitoring
and fall detection in assisted living due to a number of attributes
not shared by other sensing modalities [11]. Generally, activity
classification is based on extracting characteristics from micro-
Doppler (mD) signatures. The relative motion of the components
of a body generates unique patterns in the time-frequency domain
of radar returns. As a result, different activities generate unique
features used for classification. A mD overview is provided in [29].

Mainstream techniques for classification consist of measuring
and extracting different spectrogram characteristics (centroid,
Doppler bandwidth, repetition period…), followed by different
classifiers [21, 30–32]. Common classification techniques include
Fisher discriminant analysis [33, 34], K-nearest neighbours (KNN)
[35], Naïve Bayes [36], Ensembles (e.g. [37]), support vector
machine (SVM) [38].

In [11], an overview of classifiers is given for fall detection.
They recommend using multiple sensors to raise the precision of
fall detection by covering the target movement from multiple
directions and to combat occlusions. Data fusion is performed by
feature combination or selection. Although more complex, the
combination method outperforms the selection method for different
motion classifications. A variety of classifiers are used for fall
detection [39, 40] with SVM being the most popular. However, the
choosing relevant features has been determined to have a greater
impact on classification accuracy than the classifier applied [41].
Numerous contributions try to extract features and classify actions
from the radar mD signatures [13, 42, 43].

This paper builds on our previous work on experimental radar
design [44–48] for the experimental setup and procedure. As for
the activities of daily living, this is the continuation of our work in
gait analysis [49], activity classification with radar [19, 21, 32, 50]
taking into account similar actions challenging the classification
process and including a Parkinsonian gait and a gerontology test
for independence assessment.

3 Methodology
Fig. 1 shows the experimental setup with the radar and the Kinect
V2 for ground truth. Ten different actions were performed (Table 1)
with five different subjects (Table 2) obtaining 424 radar
signatures. 

The actions were purposely designed to include confusers
specifically for falls as it is important to maximise fall detection
and minimise the false alarm rate. A Parkisonian gait was
mimicked to see if it was distinguishable from regular walk. In
gerontology, the test time up and go [51] is assessing the ability of
an elderly person to live independently. This would allow
automated tests to be carried out on a regular basis if a radar
system was fitted in retirement/private homes.

Fig. 1  Experimental setup (left) distances and equipment placement (right) experimental protocol markings
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For the experiments, a custom-built S-band radar from Beijing
Institute of Technology (BIT) with carrier frequency 3.3 GHz and
instantaneous bandwidth 320 MHz was used with two standard-
gain horn antennas (15 dB). The signal is a phase-coded stepped
frequency (PCSF) [52] with a step of 5 MHz and a pulse repetition
period of 64 μs. The ADC used to capture the data is TI
ADC12D1000 with 12-bit resolution with a sampling frequency of
100 MS/s generating 200 MB/s of data. The measurements took
place in BIT.

3.1 Signal processing

The code processing the raw data is organised as follows. First, the
raw data is digital down-converted to baseband, then the I and Q
data are reconstructed using a Hilbert filter before decimation by a
factor of five. Then, the range compression is done for every pulse
repetition period of 64 μs [52] resulting in range-profile vector
length of 4800.

A first-order moving target indicator filter is applied to remove
static clutter before generating range-Doppler images.

A total of 213 range profiles (0.5243 s) are used to generate one
image with a fast Fourier transform (FFT) of length 214 (zero-
padding) applied per range bin across the slow time dimension
yielding: an unambiguous range of 9600 m, range resolution 1.5 m,
Doppler ambiguity of 15.625 MHz, and a Doppler resolution of
1.9 Hz without windowing and 2.62 Hz with a Hamming window
(selected for this study). The resolutions in range and Doppler are
sufficiently fine to observe the mD modulations. The range-
Doppler image is summed over the range dimension to obtain one
spectrogram slice only retaining the Doppler information. A 95%
overlap is used on the generation of range-Doppler images to
obtain smoother spectrograms. The use of FFT for spectrograms
imposes a trade-off between time and Doppler resolution. Other
solutions for time-frequency transforms such as wavelet or bilinear
transforms (Wigner-Ville, Cohen's class) exist with their own
advantages and disadvantages [53], and this will be the subject of
further research but are beyond the scope of this paper.

3.2 Feature extraction and selection

The features used were selected from previous activity recognition
applications with radar [19, 21, 32] with new features which are
expected to improve classification accuracy.

The principle features are the same: Doppler centroid and
bandwidth. The former indicates the signature centre mass with
modulations from limb movement contributing to this metric, the
latter is the average spread of the mD signature which is dependent
on the movements generated by the targets.

To estimate the overall signature information, we use entropy
which indicates the randomness within spectrogram images. For
interpreting the shift, which occurs when a limb is moved as
certain Doppler bins shift values, we use skewness of the
monochrome spectrogram. Singular value decomposition has been
used here again as it provides a reduced information set while
maintaining valuable spectral and temporal information.

Cadence velocity diagram (CVD)-based features in [32] have
been reapplied to exploit instantaneous frequency. CVD upper and
lower envelopes have been utilised along with periodic movement
features (step repetition frequency).

In addition, we have also used the energy curve feature. It takes
the energy within the time-frequency plot and uses the accumulated
intensity in the frequency bands to indicate overall movement.
Finally, to identify salient features, we perform an iterative
selection method described in [32, 41]. Here, we test feature
combinations to find the best performing set by training and testing
on a feature-by-feature basis.

4 Results
4.1 Importance of selecting correct Doppler frequency bands

In preliminary tests, instead of selecting specific frequency band of
the spectrogram which encompasses the range for human
movement we used it in its entirety shown in Fig. 2 (left). 

Using SVM with a cubic kernel and feature selection, the
results (Fig. 3) were generated. The training to testing ratio was 7:3
with stratified subsampling, meaning each of the classes had the
same training to testing ratio, to prevent class imbalance. This
process was repeated 20 times and the average is presented in this
paper. Here, we see an average classification of 65% with low

Table 1 Actions performed during the experiment
Action Name Description
1 time up and go (TUG) the subject is initially sitting on the chair, stands up and starts walking up to line 4, end position varied a bit.
2 check under a chair start from upright position next to the chair, start looking under the chair and probing with hand and then stand

back up.
3 fall falling on the soft pink fabric between line 2 and line 4 about the radar line-of-sight (LOS)
4 parkinsonian walk started from the end of the black line in front of line 2 up until line 3 with some variation in ending position.
5 pick up a pen start from upright position and pick up a pen - includes bending to putting a knee down to do so and then stand

back up.
6 sit on the floor start from upright position between line 2 and line 4 and sit on the floor.
7 sit on a chair the chair was placed on line 2 and centre on the radar LOS, the subject was standing in front of the chair before

sitting.
8 tie shoe laces start from upright position and tie shoe laces - includes bending to putting a knee down to do so and then stand

back up.
9 walk walk from behind line 1 to line 4The place the subjects stopped around line 4 varied in the radar LOS
10 walk carrying a bar walk from behind line 1 to line 4. The place the subjects stopped around line 4 varied in the radar LOS
 

Table 2 Subjects' physical attributes and actions performed
Parameters▾/Subject► 1 2 3 4 5
height (cm) 165 160 180 160 170
arm length (cm) 66 65 76 62 63
leg length (cm) 94 87 102 84 92
shoulder + head (cm) 26 27 26 28 29
gender M M M F M
actions performed 1–10 1–10 1–10 1–10 1–2
total radar signatures 103 101 100 100 20
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classification rates for activities 2 and 9. There is a non-uniform
pattern of confusion, notably for activity 1, where confusion in the
range of 15–25% occurs. Four cases of severe misclassification,
highlighted in dark red, occurred meaning while there is enough
information within the spectrogram with the extended frequency
range; it is not enough for the features to correctly be attributed to
the correct class. In short, it makes the feature space noisy and
inaccurate and this has direct effect on some classes.

Looking at activity 1 (TUG), it is mostly confused with two
other activities, activity 3 (fall) and activity 9 (walk) towards the
radar. Considering TUG is composed of standing up, a forward
movement, and walking towards the radar, it is understandable that
it is confused as these two activities. Radial movement of both
sitting up and falling is expected to be similar as both involve
forward movement of the torso. For a healthy individual, the TUG
and walk should have the same signature for the walk, which
would have the same radial component making it easily
confusable.

Activity 2 (check under a chair) is often confused with activity
8 (tie shoelaces). The central component of the movement is
bending forwards, going to a low elevation and remaining there for
a certain duration. In this instance, the hand movements, which
separate the classes, seem to be ignored due to the noise in the
feature space.

Misclassification occurs with activity 10 (walk carrying a bar)
and activity 9 (walk). The increased noise hinders the detection of
the arm movements, which separate the activities.

The general similarity of the various movements increases the
difficulty for classifying between them, when the spectrogram and
the derived features have redundancies or do not carry useful
information. Less severe misclassification events across the
activities also occur but the motions present variations between
participants making the task arduous.

After selecting frequency bands for feature extraction, we used
feature selection to investigate which features were contributing to
the accuracy and if any of them were redundant. Fig. 4 shows the
results from the feature selection process and when all features are
used, the classification accuracy is 85%. The confusion matrix
resulting from selecting all the features is shown in Fig. 5 and
when compared to Fig. 3, we see the effect of selecting the correct
frequency band as all the severe misclassification events, which are
in squares in Figs. 3 and 5 and 6; either decrease or disappear. 
Using the specific bands, appears to increase the accuracy of
detecting A3 (falls in blue), which is a key activity in assisted
living. Through this selection, it rises from 80 to 98% meaning
most falls are detected.

4.2 Feature selection and overall results

In Fig. 4, we see the optimal features are around the 13-feature
mark. It is notable that with seven features, it approaches the
maximum accuracy. From the pool of features, the centroid and
spectral SVD-based features appear to be the most salient with
entropy, energy curve, and step repetition frequency.

Fig. 6 displays the result from the post-feature-selection
classification. Looking at the previous cases where activities were
misclassified severely, the boxed items in Figs. 3, 5 and 6; we see
that the misclassification events are further attenuated after feature
selection. The remarkable result, however, is again, in fall
detection, highlighted in blue, where it increased to 100%. This

Fig. 2  Spectrograms for activity 9: walking. (Left) No frequency band selection (right) human movement band selected
 

Fig. 3  Confusion matrix without band selection
 

Fig. 4  Accuracy over the number of features as inputs
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simply emphasises the critical nature of having salient features,
since the presence of redundancies in the feature space appears to
reduce the detection of fall events, which is a necessary
characteristic of any assisted elderly care system.

5 Conclusion
For an automated elderly care system, the various benefits of radar
make it an attractive sensing modality to use. In this paper, we
demonstrated the use of an S band radar to classify a set of
activities representative of movements made by the elderly on a
daily basis. We demonstrated the importance of selecting frequency
bands close to the human movement when extracting features
along with the use of feature selection and its importance in
classifying specific critical activities such as falls to a high
accuracy.

Despite the feasibility of using radar for this set of similar
activities is apparent, it would be desirable for the detection rates
of other activities to be as high as possible. For this, new features,
which exploit the arm movements, would be required. Other future
work will involve having a varied sample of participants and
evaluating the importance of sensor location.
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