5 research outputs found

    Querying for the Largest Empty Geometric Object in a Desired Location

    Full text link
    We study new types of geometric query problems defined as follows: given a geometric set PP, preprocess it such that given a query point qq, the location of the largest circle that does not contain any member of PP, but contains qq can be reported efficiently. The geometric sets we consider for PP are boundaries of convex and simple polygons, and point sets. While we primarily focus on circles as the desired shape, we also briefly discuss empty rectangles in the context of point sets.Comment: This version is a significant update of our earlier submission arXiv:1004.0558v1. Apart from new variants studied in Sections 3 and 4, the results have been improved in Section 5.Please note that the change in title and abstract indicate that we have expanded the scope of the problems we stud

    Computing the smallest k-enclosing circle and related problems

    Get PDF
    AbstractWe present an efficient algorithm for solving the “smallest k-enclosing circle” (kSC) problem: Given a set of n points in the plane and an integer k ⩽ n, find the smallest disk containing k of the points. We present two solutions. When using O(nk) storage, the problem can be solved in time O(nk log2 n). When only O(n log n) storage is allowed, the running time is O(nk log2 n log n/k). We also extend our technique to obtain efficient solutions of several related problems (with similar time and storage bounds). These related problems include: finding the smallest homothetic copy of a given convex polygon P which contains k points from a given planar set, and finding the smallest disk intersecting k segments from a given planar set of non-intersecting segments

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore