126 research outputs found

    New theoretical coefficient robustness results for FETI-DP

    Get PDF

    Balancing domain decomposition by constraints and perturbation

    Get PDF
    In this paper, we formulate and analyze a perturbed formulation of the balancing domain decomposition by constraints (BDDC) method. We prove that the perturbed BDDC has the same polylogarithmic bound for the condition number as the standard formulation. Two types of properly scaled zero-order perturbations are considered: one uses a mass matrix, and the other uses a Robin-type boundary condition, i.e, a mass matrix on the interface. With perturbation, the wellposedness of the local Neumann problems and the global coarse problem is automatically guaranteed, and coarse degrees of freedom can be defined only for convergence purposes but not well-posedness. This allows a much simpler implementation as no complicated corner selection algorithm is needed. Minimal coarse spaces using only face or edge constraints can also be considered. They are very useful in extreme scale calculations where the coarse problem is usually the bottleneck that can jeopardize scalability. The perturbation also adds extra robustness as the perturbed formulation works even when the constraints fail to eliminate a small number of subdomain rigid body modes from the standard BDDC space. This is extremely important when solving problems on unstructured meshes partitioned by automatic graph partitioners since arbitrary disconnected subdomains are possible. Numerical results are provided to support the theoretical findings.Peer ReviewedPostprint (published version

    On the initial estimate of interface forces in FETI methods

    Full text link
    The Balanced Domain Decomposition (BDD) method and the Finite Element Tearing and Interconnecting (FETI) method are two commonly used non-overlapping domain decomposition methods. Due to strong theoretical and numerical similarities, these two methods are generally considered as being equivalently efficient. However, for some particular cases, such as for structures with strong heterogeneities, FETI requires a large number of iterations to compute the solution compared to BDD. In this paper, the origin of the bad efficiency of FETI in these particular cases is traced back to poor initial estimates of the interface stresses. To improve the estimation of interface forces a novel strategy for splitting interface forces between neighboring substructures is proposed. The additional computational cost incurred is not significant. This yields a new initialization for the FETI method and restores numerical efficiency which makes FETI comparable to BDD even for problems where FETI was performing poorly. Various simple test problems are presented to discuss the efficiency of the proposed strategy and to illustrate the so-obtained numerical equivalence between the BDD and FETI solvers

    Simultaneous-FETI and Block-FETI: robust domain decomposition with multiple search directions.

    Get PDF
    International audienceDomain Decomposition methods often exhibit very poor performance when applied to engineering problems with large heterogeneities. In particular for heterogeneities along domain interfaces the iterative techniques to solve the interface problem are lacking an efficient preconditioner. Recently a robust approach, named FETI-Geneo, was proposed where troublesome modes are precomputed and deflated from the interface problem. The cost of the FETI-Geneo is however high. We propose in this paper techniques that share similar ideas with FETI-Geneo but where no pre-processing is needed and that can be easily and efficiently implemented as an alternative to standard Domain Decomposition methods. In the block iterative approaches presented in this paper, the search space at every iteration on the interface problem contains as many directions as there are domains in the decomposition. Those search directions originate either from the domain-wise preconditioner (in the Simultaneous FETI method) or from the block structure of the right-hand side of the interface problem (Block FETI). We show on 2D structural examples that both methods are robust and provide good convergence in the presence of high heterogeneities, even when the interface is jagged or when the domains have a bad aspect ratio. The Simultaneous FETI was also efficiently implemented in an optimized parallel code and exhibited excellent performance compared to the regular FETI method

    Combining Machine Learning and Adaptive Coarse Spaces - A Hybrid Approach for Robust FETI-DP Methods in Three Dimensions

    Get PDF
    The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse spaces in domain decomposition methods and certain supervised machine learning techniques. Adaptive coarse spaces ensure robustness of highly scalable domain decomposition solvers, even for highly heterogeneous coefficient distributions with arbitrary coefficient jumps. However, their construction requires the setup and solution of local generalized eigenvalue problems, which is typically computationally expensive. The idea of ML-FETI-DP is to interpret the coefficient distribution as image data and predict whether an eigenvalue problem has to be solved or can be neglected while still maintaining robustness of the adaptive FETI-DP method. For this purpose, neural networks are used as image classifiers. In the present work, the ML-FETI-DP algorithm is extended to three dimensions, which requires both a complex data preprocessing procedure to construct consistent input data for the neural network as well as a representative training and validation data set to ensure generalization properties of the machine learning model. Numerical experiments for stationary diffusion and linear elasticity problems with realistic coefficient distributions show that a large number of eigenvalue problems can be saved; in the best case of the numerical results presented here, 97% of the eigenvalue problems can be avoided to be set up and solved
    • …
    corecore