710 research outputs found

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    HybridConcatenated Coding Scheme for MIMO Systems

    Get PDF
    Abstract: Inthis paper, two hybrid concatenated super-orthogonal space-time trellis codes(SOSTTC) applying iterative decoding are proposed for flat fading channels. Theencoding operation is based on the concatenation of convolutional codes,interleaving and super-orthogonal space-time trellis codes. The firstconcatenated scheme consists of a serial concatenation of a parallelconcatenated convolutional code with a SOSTTC while the second consists ofparallel concatenation of two serially concatenated convolutional and SOSTTCcodes. The decoding of these two schemes is described, their pairwise errorprobabilities are derived and the frame error rate (FER) performances areevaluated by computer simulation in Rayleigh fading channels. The proposedtopologies are shown to perform better than existing concatenated schemes with aconstituent code of convolutional andspace-time codes in literature

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Application of Space-Time Diversity/Coding For Power Line Channels

    Get PDF
    The purpose of the present work is to evaluate the application of space-time block codes to the transmission of digital data over the power-line communication channel (PLC). Data transmitted over the power-line channel is usually corrupted by impulsive noise. In this work we analyse the performance of space-time block codes in this type of environment and show that a significant performance gain can be achieved at almost no processing expense

    The Error Performance and Fairness of CUWB Correlated Channels

    Get PDF
    AbstractThe symbol period becomes smaller compared to the channel delay in multiband orthogonal frequency division multiplexing (MB-OFDM) cognitive ultra wideband (CUWB) wireless communications, the transmitted signals experiences frequency-selective fading and leads to performance degradation. In this paper, a new design method for space-time trellis codes in MB-OFDM systems with correlated Rayleigh fading channels is introduced. This method converts the single output code symbol into several STTC code symbols, which are to be transmitted simultaneously from multiple transmitter-antennas. By using Viterbi optimal soft decision decoding algorithm, we investigate both quasi-static and interleaved channels and demonstrate how the spatial fading correlation affects the performance of space–time codes over these two different MB-OFDM wireless channel models. Simulation results show that the performance of space–time code is to be robust to spatial correlation. When the system bandwidth increases, the long term fairness quality will gradually become better and finally converges to 1

    Error Performance Of Super-Orthogonal Space-Time Trellis Codes with Transmit Antenna Selection

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    SUPER ORTHOGONAL SPACE TIME TRELLIS CODES OVER NAKAGAMI FADING MODEL

    Get PDF
    Performance evaluation of super orthogonal space-time trellis codes for non-frequency selective fading channels & frequency selective fading channels. The analysis is done in presence of fast fading, block fading and quasi-static fading in Rayleigh, and Nakhagami fast fading channels along with comparison. While providing full diversity and full rate, the structure of our new codes allows an increase in the coding gain. Not only does our new SOSTTC outperform the space-time trellis codes in the literature, but it also provides a systematic method for designing space time trellis codes at different rates and for different trellises. Since we have used orthogonal designs as the building blocks in our new SOSTTCs, the complexity of the decoding remains low while full diversity is guaranteed. Codes operating at different rates, up to the highest theoretically possible rate, for different number of states, can be designed by using our optimal set partitioning. In general, new SOSTTCs can provide a tradeoff between rate and coding gain while achieving full diversity

    EM-Based iterative channel estimation and sequence detection for space-time coded modulation

    Get PDF
    Reliable detection of signals transmitted over a wireless communication channel requires knowledge of the channel estimate. In this work, the application of expectationmaximization (EM) algorithm to estimation of unknown channel and detection of space-time coded modulation (STCM) signals is investigated. An STCM communication system is presented which includes symbol interleaving at the transmitter and iterative EM-based soft-output decoding at the receiver. The channel and signal model are introduced with a quasi-static and time-varying Rayleigh fading channels considered to evaluate the performance of the communication system. Performance of the system employing Kalman filter with per-survivor processing to do the channel estimation and Viterbi algorithm for sequence detection is used as a reference. The first approach to apply the EM algorithm to channel estimation presents a design of an online receiver with sliding data window. Next, a block-processing EM-based iterative receiver is presented which utilizes soft values of a posteriori probabilities (APP) with maximum a posteriori probability (MAP) as the criterion of optimality in both: detection and channel estimation stages (APP-EM receiver). In addition, a symbol interleaver is introduced at the transmitter which has a great desirable impact on system performance. First, it eliminates error propagation between the detection and channel estimation stages in the receiver EM loop. Second, the interleaver increases the diversity advantage to combat deep fades of a fast fading channel. In the first basic version of the APP-EM iterative receiver, it is assumed that noise variance at the receiver input is known. Then a modified version of the receiver is presented where such assumption is not made. In addition to sequence detection and channel estimation, the EM iteration loop includes the estimation of unknown additive white Gaussian noise variance. Finally, different properties of the APP-EM iterative receiver are investigated including the effects of training sequence length on system performance, interleaver and channel correlation length effects and the performance of the system at different Rayleigh channel fading rates
    corecore