351 research outputs found

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various 1,p\ell_{1,p} matrix norms with p1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Dictionary Learning for Sparse Representations With Applications to Blind Source Separation.

    Get PDF
    During the past decade, sparse representation has attracted much attention in the signal processing community. It aims to represent a signal as a linear combination of a small number of elementary signals called atoms. These atoms constitute a dictionary so that a signal can be expressed by the multiplication of the dictionary and a sparse coefficients vector. This leads to two main challenges that are studied in the literature, i.e. sparse coding (find the coding coefficients based on a given dictionary) and dictionary design (find an appropriate dictionary to fit the data). Dictionary design is the focus of this thesis. Traditionally, the signals can be decomposed by the predefined mathematical transform, such as discrete cosine transform (DCT), which forms the so-called analytical approach. In recent years, learning-based methods have been introduced to adapt the dictionary from a set of training data, leading to the technique of dictionary learning. Although this may involve a higher computational complexity, learned dictionaries have the potential to offer improved performance as compared with predefined dictionaries. Dictionary learning algorithm is often achieved by iteratively executing two operations: sparse approximation and dictionary update. We focus on the dictionary update step, where the dictionary is optimized with a given sparsity pattern. A novel framework is proposed to generalize benchmark mechanisms such as the method of optimal directions (MOD) and K-SVD where an arbitrary set of codewords and the corresponding sparse coefficients are simultaneously updated, hence the term simultaneous codeword optimization (SimCO). Moreover, its extended formulation ‘regularized SimCO’ mitigates the major bottleneck of dictionary update caused by the singular points. First and second order optimization procedures are designed to solve the primitive and regularized SimCO. In addition, a tree-structured multi-level representation of dictionary based on clustering is used to speed up the optimization process in the sparse coding stage. This novel dictionary learning algorithm is also applied for solving the underdetermined blind speech separation problem, leading to a multi-stage method, where the separation problem is reformulated as a sparse coding problem, with the dictionary being learned by an adaptive algorithm. Using mutual coherence and sparsity index, the performance of a variety of dictionaries for underdetermined speech separation is compared and analyzed, such as the dictionaries learned from speech mixtures and ground truth speech sources, as well as those predefined by mathematical transforms. Finally, we propose a new method for joint dictionary learning and source separation. Different from the multistage method, the proposed method can simultaneously estimate the mixing matrix, the dictionary and the sources in an alternating and blind manner. The advantages of all the proposed methods are demonstrated over the state-of-the-art methods using extensive numerical tests

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore