12,262 research outputs found

    New protocols for the election of a leader in a ring

    Get PDF
    AbstractIn this paper we investigate the impact of time for the election of a leader in a distributed environment. We propose a new protocol schema that can be specialized to obtain several protocols with different communication-time characteristics when the network is ring-shaped and the communications between processors are synchronous

    An improved leader election algorithm for distributed systems

    Get PDF
    Leader Election Algorithm, not only in distributed systems but in any communication network, is an essential matter for discussion. Tremendous amount of work are happening in the research community on this Election, because many network protocols are in need of a coordinator process for the smooth running of the system. These socalled Leader or Coordinator processes are responsible for the synchronization of the system. If there is no synchronization, then the entire system would become inconsistent which intern makes the system to lose its reliability. Since all the processes need to interact with the leader process, they all must agree upon who the present leader is. Furthermore, if the leader process crashes, the new leader process should take the charge as early as possible. New leader is one among the currently running processes with the highest process id. In this paper we have presented a modified version of ring algorithm. Our work involves substantial modifications of the existing ring election algorithm and the comparison of message complexity with the original algorithm. Simulation results show that our algorithmminimizes the number of messages being exchanged in electing the coordinator.

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(logn)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(logΔ+loglogn)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(loglogn)\Omega(\log \log n) bits per register also holds for leader election

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring
    corecore