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Abstract. In this paper we investigate the impact of time for the election of a leader in a distributed 

environment. We propose a new protocol schema that can be specialized to obtain several protocols 

with different communication-time characteristics when the network is ring-shaped and the 

communications between processors are synchronous. 

1. Introduction 

In recent years great attention has been devoted to the computational resources 

required to solve problems in a distributed environment. In this paper we consider 

the problem of electing a leader in a synchronous ring-shaped network. There are 

n processors, but this is not known to the processors. The processors have only 

local information of the network and are identical except that each one has its own 

identifier. At various points in time one or more processors ‘wake up’ and initiate 

their participation in an election to decide on a unique leader among the participating 

processors. We assume that the ring is unidirectional (i.e., each processor receives 

messages from one of its neighbours and sends messages to the other one). The 

interesting resources are the total number of messages used and the time. 

This problem is important not only because it occurs in practical situations (i.e., 

crash recoveries), but also because the communication costs (both upper and lower 

bounds) required in order to achieve any agreement in a decentralized network 

seem to be of the same order as the costs for the election of a leader. The problem 

has received attention by a number of researchers [l-8]. In the case of a ring-shaped 

asynchronous network O(n log n) messages and O(n) time are sufficient [3,7]; 

furthermore, it has been proved that cR(n log n) messages are necessary, even if all 

processors know the size of the ring [2]. Since the lower bound proof does not 

apply to the case of synchronous networks, it is interesting to study the impact of 

synchronization on the number of messages used. 

A first important step in this direction has been performed by Frederickson and 

Lynch [4] and, independently, by Vitanyi [8]. They found a protocol that uses O(n) 

messages and exponential time. Namely, the protdcol assumes that the identities of 

the processors are numbers and requires O(n2’-hn) time units, where i,i” is the 
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identity of the leader. Furthermore, it has been shown that both the use of time and 

of the identity number is essential if we want to use less than O(n log n) messages. 

In fact, Frederickson and Lynch [4] proved that in the synchronous case 

(i) if we consider algorithms that use only comparisons, then a( n log n) messages 

are necessary; 

(ii) there is a (fast increasing) function f(n, f) such that if we allow identities to 

be chosen between 1 and f(n, f), then any protocol that finds a leader in less than 

t time units needs O(n log n) messages. 

As a consequence of these results it is quite natural to investigate the trade-off 

between time and number of messages required for the election of a leader in a 

synchronous ring. In this paper we address the question whether it is possible to 

obtain protocols that use less than exponential time and between 0( n) and 0( n log n) 

messages. We positively answer this question by showing a protocol scheme based 

on a new technique that can be specialized in order to obtain several protocols with 

different communication-time characteristics. 

In Section 2 we will present the main idea of the protocol scheme that will be 

presented in detail in Section 3. In Section 4 we will analyse the resources required 

by the scheme and in Section 5 we will obtain a number of different protocols. If 

&, is the number representing the identity of the leader we can obtain protocols 

with the following characteristics: 

(Pl) 0( n log,. n) messages and O(c n imi,,) time, c 2 2; 

(P2) O(n log, log,. n) messages and O(n” i,i,) time, c 2 2, a > 1; 

(P3) 0( n log, log, log, n) messages and 0( n’Ogl” i,,,) time; 

(P4) O(n log*n) messages and O(2”’ i,i,) time, E > 0. 

For the rest of the paper we assume, without loss of generality, that the identities 

of the processors are positive numbers and that the leader will be the participating 

processor with the smallest identity. 

2. A (too much) simplified protocol 

In this section we present a simple and efficient protocol based on relaxing some 

of the assumptions of the problem. The simple protocol we obtain is a good starting 

point in order to present how time is used in the protocol scheme presented in 

Section 3. We make the following assumptions: 

(a) each processor knows n, the size of the ring; 

(b) all processors start the election at the same time t = 0. 

If assumptions (a) and (b) hold and processor 1 takes part in the election, then 

it is the winner; hence, the only thing it has to do is to broadcast to all processors 

the message ‘1 elected’. If processor 1 does not participate in the election, then 

there is no message in the ring for the first n time units. This implies that if processor 

2 participates at the election and does not receive the message ‘1 elected’, it knows 

at time n - 1 that it is the winner and broadcasts at time n the message ‘2 elected’. 
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Analogously if processor i is participating at the election, it waits for n( i - 1) - 1 

time units. If it has not received any message, it is the winner and sends at time 

n( i - 1) the message ‘i elected’. 

Clearly, the protocol is correct and requires n + 1 messages and time O(& n) 

where ilnin is the identity of the winner. 

If we know an upper bound N on n, the protocol can be easily modified and its 

time complexity is O(i,,, N). It is possible to obtain a modified protocol when 

assumption (b) does not hold, but in order to eliminate assumption (a) we need 

major modifications because the knowledge on n (or an upper bound on n) is 

essential in this protocol. 

The main idea in order to circumvent the problem of knowing n is based on 

guessing its value. Roughly speaking the new protocol will use hypotheses h, , h2, . . 

of increasing value on the length of the ring. When hypothesis h, holds, the 

processors are in phase m and will behave according to the protocol introduced in 

this section as if the length of the ring is h,. If n is greater than h,, a new hypothesis 

h Wt+, will be formulated. The protocol will proceed in this way until a hypothesis 

h, 2 n will be formulated; at the end of this phase the election is terminated. We 

will obtain different protocols depending on the way we pass from hypothesis h, 

to hypothesis h,,, as we will see in Section 5. 

3. The protocol scheme 

The first problem that we face in order to formalize the ideas sketched at the end 

of the preceding paragraph is that not all the processors wake up at the same time. 

In order to solve this problem we use an idea introduced in [4,8]. Namely, we have 

a preliminary phase 0; when a processor decides to participate in the election, it 

spawns the message ‘election started’ to its neighbour. The message is transmitted 

along the ring until it meets a processor that has already sent this message. When 

a processor receives the message ‘election started’, it decides whether it wants to 

take part at the election; in any case it enters phase 1. A processor cannot decide 

to participate at the election after it has received the first message. Not all identities 

start phase 1 at the same time: let t(i) be the time identity i starts phase 1. 

In the following phases of the protocol we focus on the identities of the participat- 

ing processors. At the beginning all participating identities are ‘alive’; during the 

election they will travel along the ring, increasing their phase number, and will 

eventually ‘die’ as soon as they become aware that there is a ‘smaller identity’ 

participating in the election. At the end, the smallest identity will be the only identity 

alive and the corresponding processor will be the leader. 

At each moment the identities will travel along the ring at different speeds 

depending on their value and on their phase number, and each processor will 

memorize the smallest participating identity it is aware of. When processor i receives 

identity .i in phase m it decides on one of the following actions: 



56 A. Marchetti-Spaccamela 

(a) if j is the identity of the processor itself, then the processor is the winner of 

the election and sends the message ‘j elected’; 

(b) if it is aware of a smaller participating identity, it will kill j because j cannot 

be the leader any more; 

(c) if j is the lowest identity the processor has seen, then if another identity j’ is 

waiting at processor i, then j’ will be killed because it cannot be the leader anymore. 

Then, if j has not completed phase m, processor i will send j to its neighbour; 

otherwise, if j has completed phase m, the processor will delay j for a time 

proportional to the value of j. If at the end of this period no better value has arrived, 

then processor i sends j to its neighbour. 

In this way the number of alive messages will decrease as the election proceeds 

and the elected processor will be the only one whose identity will be back home 

(i.e., the only identity that will walk around the complete ring). 

The stop and go schema is implemented as follows: at the beginning, each 

participating processor formulates an hypothesis h, on the length of the ring and 

will delay its identity i for 2ih, time units. If, in the meantime, no better identity 

has arrived, the processor sends the message (i, h, , 1) (identity, hypothesis, distance 

walked) to its clockwise neighbour that will either kill it or will send the message 

(i, h, ,2) to its clockwise neighbour that will either kill it or will send the message 

(i, h, ,3). The identity will walk in this way for h, processors. When a processor p 

receives the message (i, h,, h,), identity i has performed phase 1 at time t(i) + 

h,(2i+ 1). 

Processor p will formulate for i a new hypothesis h?, h, > h,, on the length of 

the ring and will delay identity i for 2i( h, - h,) time units. If, at the end of this 

period, no better identity has arrived, identity i will start its second phase and the 

message (i, hz, h, + 1) will be sent. During the phase identity i will walk for h2 - h, 

processors in the same way as before. 

The phase will be completed when identity i has walked for h, processors or it 

has returned to its starting point. In the former case a new hypothesis will be 

formulated; in the latter case i is the winner. The identity i will proceed formulating 

new hypotheses on the length of the ring until it dies or it has returned to its starting 

point. Note that at each processor there is one waiting message at most. 

Each processor i will use three local variables ‘bestid’, M’ and ‘count’ with the 

following meaning: 

l ‘bestid’ is an integer that memorizes the value of the best identity that i has seen 

in so far; 

l A4 is a triple (j, h,, w) that memorizes the message that is eventually waiting at i; 

l ‘count’ is an integer that is used to count the delay of the waiting message. 

The protocol scheme for processor i 

/phase O/ 

if awaken 
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then 

begin 

send message ‘election started’ to clockwise neighbour; 

receive message; 

/the processor waits till it receives a message ‘election started’ from its anticlock- 

wise neighbourl 

/prepare message/ M’ := (i, h, , 1); 

count := 2 ih ,; 

/M’ will be delayed for count time units/ 

bestid := i; 

end 

else 

begin 

receive message; 

/the processor waits till it receives a message ‘election started’ from its anticlock- 

wise neighbour/ 

send message ‘election started’ to clockwise neighbour; 

if willing to participate 

then begin 

/prepare message/ M’:= (i, h, , 1); 

count := 2ih,; 

/M’ will be delayed for count time units/ 

bestid := i; 

end 

else bestid := +CO 

end; 

/following phases/ 

repeat in each (local) time unit 

read incoming message M from anticlockwise neighbour; 

/if no message is received in this time unit, then assume M = (j, 1, 1) with 

j > bestid/ 

if message M is ‘i elected’ then the election is finished; 

/everybody knows the winner is me, i/ 

if the message is ‘j elected’ and j # i 

then send message ‘j elected’ to clockwise neighbour; 

if message M is (j, h,, w) 

then begin 

if j = i then/proclaim j elected/ 

send message ‘j elected’ to clockwise neighbour; 

if j < bestid 

then begin 

bestid :=.j; 
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if there is a waiting message M’ then kill it; 

if w < h, 

then /phase m is not finished/ 

send (i, h,, w + 1) to clockwise neighbour; 

else /phase m is finished/ 

begin 

/prepare message/ M’:= (j, h,,, , w + 1) 

count := 2j( h,,, - h,) 

/M’ will be delayed for count time units/ 

end 

end; 

if j > bestid 

then begin count := count - 1; 

if count =0 and M’ has not been killed 

then send M’ to clockwise neighbour 

end 

end 

until the election is finished. 

4. Analysis of the protocol schema 

The correctness of the algorithm follows from the following observations: 

(1) for each participating identity there is at most one message in the ring; 

(2) at the end of phase m an alive identity either has walked for h, steps or it 

is back at its starting point; 

(3) for all m, h,,, is greater than h,; 

(4) there is only one identity, the identity of the leader, that arrives at the processor 

it started from. 

Theorem 4.1. The protocol jinishes in a finite amount of time and at the end a leader 

has been elected. 

Proof. The proof follows from observations (1) through (4). 0 

The rest of this section will be devoted to the analysis of the requirements of the 

protocol scheme. 

The proof of the following theorem is trivial and is omitted. 

Theorem 4.2. Phase 0 requires n messages and there are at most n time units between 

the time the$rst processor wakes up and the time the last identity decides to participate 

at the election. 
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The evaluation of the number of messages required in phase 1 is complicated by 

the fact that not all the identities start the phase at the same time. Furthermore, the 

analysis of the following phases is more difficult because the time at which identity 

i will start phase m, m = 2,3,. . , depends on the time at which i starts phase 1 

and on the value of the identity itself. 

The following theorem allows to bound the number of messages sent for each 

phase. 

Theorem 4.3. For any set I of participating processors the total number of messages 

sent in phase m, m > 0 (i.e., the total number of messages of the form (i, h,,,, w), i E I, 

h,_, < w s h,), is less than 2n. 

In order to prove the theorem we need some preliminary observations. First of 

all note that, during the execution of the algorithm, the relative order in the ring 

among alive identities does not change, because an identity that is passed by a faster 

one dies. 

This allows to define a cyclic order on any set S of alive identities. We say that 

S = (id(l), id(2), . . . , id(n)) is ordered if 

(a) id(i- 1) is the immediate predecessor of id(i) (in clockwise order), i = 

L, 5,. . . 

(b) id(n) is the immediate predecessor of id(l) (in clockwise order). 

Given two identities i and j, let dist(i,j) be the clockwise distance between 

processors i and j; observe that 

dist( i, j) + dist( j, i) = n, t(j)< t(i)+dist(i,j). 

The next lemma gives a bound on the maximum total delay that we can have for 

any ordered set of identities. 

Lemma 4.4. For any ordered set of identities S = id(l), i = 1,2, . . , k, we have 

1 max( t(id( i)) - t(id( i - l)), 0) + max( t(id( 1)) - t(id( n)), 0) c n. 
r=Z 

Proof. It is sufficient to observe that a phase-0 message takes at most n time units 

to visit the ring. 0 

Proof of Theorem 4.3. We colour the set of alive identities at phase m as follows: 
_ identity i is white if there is some other identity j such that the segment walked 

through by i during phase m is completely contained in the segment walked 

through by j; 
_ identity i is black if there is no processor that, during phase m, sends i and, after 

i, another identity j < i; 
_ identity i is red if it is neither white nor black. 

It is easy to see that the segments walked through by black identities are non- 

overlapping. Hence, the number of messages used for black identities is no more 

than n. 
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In order to bound the number of messages used for red and white identities we 

identify pairs of identities (id(l), k(l)), (id(2), k(2)), . . . , (id(r), k(r)) such that 

(1) id(l), k(l), id(2), . . . are clockwise ordered; 

(2) k(i) is different from id(i), i = 1,2,. . . , r (but it may happen that k(i) = 

id(i+l)); 

(3) t(id(i)) is greater than t(k(i)), i = 1,2,. . . , r. 

We first show that the total number of messages used for white and red identities 

is no more than 

ii, f(id(i)) - t(k(i)). 

Later on, Lemma 4.4 will be used to bound the above sum. 

Let us consider a non-white identity i and let us define 

id(l) = i, 

B( 1) = {j lthere is a processor that, during phase m, first sends j # id( 1) 

and later id(l)}. 

Note that if j belongs to B(l), then j > id( 1) and j is not black (if either j < id(l) 

orj is black, then there is no processor that first sendsj and later id( 1)). Furthermore, 

since identity j is greater than id(l), j enters phase m before identity id(l) finishes 

phase m (otherwise, there is no processor that, during phase m, sends both j and 

id( 1)). 

This observation is formalized in the following lemma. 

Lemma 4.5. Zfj belongs to B(l), fhen 

t(j) < t(id( 1)) - h,(j - id( 1)). 

Proof. If the lemma does not hold, then j enters phase 1 at time 

t(j)+2h,j+h,_, 

= t(j)+2h, id(l)+2h,(j-id(l))+&, 

> t(id(l))+2h, id(l)+&. 

The last term denotes the time at which identity id( 1) finishes phase m. This completes 

the proof of the lemma. 0 

Proof of Theorem 4.3 (continued). If B( 1) is not empty, then we distinguish two cases. 

Case 1: there is no red identity in B(1). Let us define k(1) = max(j, jE B(1)). 

Note that k( 1) 2 IB( l)[ +id( 1). Applying Lemma 4.5 we have that the total number 

of messages sent with identities belonging to B(1) is no more than 

IB(l)lh,Sh,(k(l)-id(l))St(id(l))-t(k(1)). 
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Having bounded the number of messages belonging to B(1) let id(2) be the first 

identity, in clockwise order, that follows id(l) and does not belong to B(1). It is 

easy to see that id(2) is black. In fact, if id(2) is not black, then there is another 

identity s such that 

(1) there exists a processor that during phase m first sends id(2) and after that 

s (since id(2) is not black); 

(2) s belongs to B(1) (since id(2) is the first identity that follows id(l) and does 

not belong to B(1)); 

(3) s is white (since s belongs to B(1) and we are in Case 1). 

The fact that s is white implies that the segment walked through by s during 

phase m is completely contained in the segment walked through by id(l). This 

contradicts the fact that id(2) does not belong to B(1). 

Case 2: there is a red identity in B(1). Now, let id(2) be the red identity that 

belongs to B( 1) and whose clockwise distance from id(l) at the beginning of phase 

m is largest. Let us define 

B’(l)={jljE B(1) and identity j is at the beginning of phase m 

placed between id(l) and id(2)) 

u {id(2)), 

k(l)=max(jEB’(l)). 

Note that k( 1) > id( 1) + IB’( l)\. Applying Lemma 4.5 we have that the total number 

of messages sent with identities belonging to B’(1) is no more than 

In both cases (a) and (b) we have defined two identities id(l) and id(2) and we 

have bounded the total number of messages sent with non-black identities placed 

in the ring between id(l) and id(2). Observe that if id(l) is red, the messages sent 

with identity id(l) have not been counted; they will be considered at the end. On 

the other hand, if id(2) is red, it belongs to B’(1); this implies that the distance 

walked by it has been considered. 

Having defined id(2) we continue in a similar way by defining 

B(2) = {jl there is a processor that, during phase m, first sends j 

and after id(2)} 

and we distinguish two cases (a) and (b) depending on whether there is a red 

identity in B(2) or not. In both cases we proceed as before by defining k(2) as the 

largest identity belonging to B(2) (B’(2)) and by bounding the total number of 

messages used for identities in B(2) (B’(2)) by t(id(2)) - f(k(2)). We proceed in a 

similar way defining id(3), k(3), id(4), . . . , id(y), k(r) until we have considered all 

alive non-black identities. Observe that if id( 1) is red, then it will belong to B’(r). 

Note that each non-black identity has been considered. Suppose that there is a 

non-black identity s that has not been considered and suppose that it is placed 
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between id(i) and id( i + 1). Since the messages sent with identity s have not been 

counted, we have that B(i) does not contain a red identity and we are in Case 1 

(otherwise all non-black identities between id(i) and id( i + 1) have been considered). 

Hence, s and id( i + 1) must coincide (since id( i+ 1) has been chosen as the first 

clockwise identity that does not belong to B(i)). This contradicts the fact that s is 

not black. 

As a conclusion the total number of messages used by red and white identities 

during phase m is not more than 

i t(id(i))-t(k(i)) 
i=l 

The sequence of identities id(l), k(l), id(2), . . . is an ordered set of identities and 

applying Lemma 4.4 we have 

= J, (@(i-t 1)) - t(k(i)))+ W(l)) - t(k(r)) 

Applying Lemma 4.4 we obtain the thesis. This completes the proof of Theorem 

4.3. q 

5. Four different protocols for the ring 

Theorem 4.3 is the key theorem in the analysis of the different protocols that we 

can obtain from the protocol scheme presented in Section 3. If a protocol uses 

h,,hz,... as hypotheses, it terminates when the winning identity has completed 

phase h,, where h, is such that h,_, < n s h,. Hence, the number of messages used 

is 0( 1 n) and the time required is 0( imin h,). At this point the trade-off between time 

and total number of messages used is clear: in order to diminish the total number 

of messages sent, we want to have the number of phases as minimal as possible, 

but in this case we will have a rough approximation on the value of n that will 

affect the time required by the protocol. 

Finally we show four different protocols based on four different ways of passing 

from one hypothesis to the following one. 

(Pl) h, = c, c 3 2, h, = c h,_,; 

(P2) h, = c, c 3 2, h, = (hm-l)a, u > 1; 

(P3) h, = c, c> 2, h, = (h,,-,)‘ogz”~~~ 1; 

(P4) h,=c,cz2, h,=2ht:z-I,~>0. 
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Theorem 5.1. The number of messages and the time required by protocols (Pi), 

i=l.2,3,4 are asfollows: 

(Ph 
(P2) 
(P3) 

(P4) 

the time required is 0( c n i,i,) and the number of messages is 0( n log, n); 

the time required is 0( n” imin) and the number of messages is 0( n log, log, n); 

the time required is O(n logzn imin) and the number of messages is 

O(n log2 logI log, n); 
the time required is O(2”’ imi,) and the number of messages is O(n log*n). 

Proof. (Pl): We have 

n<h,=c’<cn, 

hence, the time required 

(P2): We have 

tGlog,n+l; 

is O(c n i,i,) and the number of messages is O(n log, n). 

n s h, = ca’ < na > t~log,log,n+1; 

hence, the time required is 0( n“ imin) and the number of messages is 0( n log, log, n). 

(P3): We have 

n < h, = clo&z’-’ < #‘Q”, 

t S a log, log, log, n + 1 for some constant a > 1; 

hence, the time required is O(n logn imin) and the number of messages is 

O( n log, log, log, n). 

(P4): We have 

n s h, < 2”‘, 

2’r 

h,=222” 
.l 

t - 2 times, 

t = O(log*n); 

hence, the time required is O(2”’ &,) and the number of messages is O(n log*n). q 
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