3,417 research outputs found

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    A hierarchically blocked Jacobi SVD algorithm for single and multiple graphics processing units

    Full text link
    We present a hierarchically blocked one-sided Jacobi algorithm for the singular value decomposition (SVD), targeting both single and multiple graphics processing units (GPUs). The blocking structure reflects the levels of GPU's memory hierarchy. The algorithm may outperform MAGMA's dgesvd, while retaining high relative accuracy. To this end, we developed a family of parallel pivot strategies on GPU's shared address space, but applicable also to inter-GPU communication. Unlike common hybrid approaches, our algorithm in a single GPU setting needs a CPU for the controlling purposes only, while utilizing GPU's resources to the fullest extent permitted by the hardware. When required by the problem size, the algorithm, in principle, scales to an arbitrary number of GPU nodes. The scalability is demonstrated by more than twofold speedup for sufficiently large matrices on a Tesla S2050 system with four GPUs vs. a single Fermi card.Comment: Accepted for publication in SIAM Journal on Scientific Computin

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure

    Analysis and Design of Communication Avoiding Algorithms for Out of Memory(OOM) SVD

    Get PDF
    Many applications — including big data analytics, information retrieval, gene expression analysis, and numerical weather prediction – require the solution of large, dense singular value decomposition (SVD). The size of matrices used in many of these applications is becoming too large to fit into into a computer’s main memory at one time, and the traditional SVD algorithms that require all the matrix components to be loaded into memory before computation starts cannot be used directly. Moving data (communication) between levels of memory hierarchy and the disk exposes extra challenges to design SVD for such big matrices because of the exponential growth in the gap between floating-point arithmetic rate and bandwidth for many different storage devices on modern high performance computers. In this dissertation, we have analyzed communication overhead on hierarchical memory systems and disks for SVD algorithms and designed communication-avoiding (CA) Out of Memory (OOM) SVD algorithms. By Out of Memory we mean that the matrix is too big to fit in the main memory and therefore must reside in external or internal storage. We have studied communication overhead for classical one-stage blocked SVD and two-stage tiled SVD algorithms and proposed our OOM SVD algorithm, which reduces the communication cost. We have presented theoretical analysis and strategies to design CA OOM SVD algorithms, developed optimized implementation of CA OOM SVD for multicore architecture, and presented its performance results. When matrices are tall, performance of OOM SVD can be improved significantly by carrying out QR decomposition on the original matrix in the first place. The upper triangular matrix generated by QR decomposition may fit in the main memory, and in-core SVD can be used efficiently. Even if the upper triangular matrix does not fit in the main memory, OOM SVD will work on a smaller matrix. That is why we have analyzed communication reduction for OOM QR algorithm, implemented optimized OOM tiled QR for multicore systems and showed performance improvement of OOM SVD algorithms for tall matrices

    randUTV: A blocked randomized algorithm for computing a rank-revealing UTV factorization

    Full text link
    This manuscript describes the randomized algorithm randUTV for computing a so called UTV factorization efficiently. Given a matrix AA, the algorithm computes a factorization A=UTVA = UTV^{*}, where UU and VV have orthonormal columns, and TT is triangular (either upper or lower, whichever is preferred). The algorithm randUTV is developed primarily to be a fast and easily parallelized alternative to algorithms for computing the Singular Value Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for problems such as low-rank approximation, solving ill-conditioned linear systems, determining bases for various subspaces associated with the matrix, etc. Moreover, randUTV produces highly accurate approximations to the singular values of AA. Unlike the SVD, the randomized algorithm proposed builds a UTV factorization in an incremental, single-stage, and non-iterative way, making it possible to halt the factorization process once a specified tolerance has been met. Numerical experiments comparing the accuracy and speed of randUTV to the SVD are presented. These experiments demonstrate that in comparison to column pivoted QR, which is another factorization that is often used as a relatively economic alternative to the SVD, randUTV compares favorably in terms of speed while providing far higher accuracy

    A robust and efficient implementation of LOBPCG

    Full text link
    Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is widely used to compute eigenvalues of large sparse symmetric matrices. The algorithm can suffer from numerical instability if it is not implemented with care. This is especially problematic when the number of eigenpairs to be computed is relatively large. In this paper we propose an improved basis selection strategy based on earlier work by Hetmaniuk and Lehoucq as well as a robust convergence criterion which is backward stable to enhance the robustness. We also suggest several algorithmic optimizations that improve performance of practical LOBPCG implementations. Numerical examples confirm that our approach consistently and significantly outperforms previous competing approaches in both stability and speed
    corecore