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Abstract

Many applications — including big data analytics, information retrieval, gene

expression analysis, and numerical weather prediction – require the solution of large,

dense singular value decomposition (SVD). The size of matrices used in many of these

applications is becoming too large to fit into into a computer’s main memory at one

time, and the traditional SVD algorithms that require all the matrix components to

be loaded into memory before computation starts cannot be used directly. Moving

data (communication) between levels of memory hierarchy and the disk exposes extra

challenges to design SVD for such big matrices because of the exponential growth in

the gap between floating-point arithmetic rate and bandwidth for many different

storage devices on modern high performance computers. In this dissertation, we have

analyzed communication overhead on hierarchical memory systems and disks for SVD

algorithms and designed communication-avoiding (CA) Out of Memory (OOM) SVD

algorithms. By Out of Memory we mean that the matrix is too big to fit in the

main memory and therefore must reside in external or internal storage. We have

studied communication overhead for classical one-stage blocked SVD and two-stage

tiled SVD algorithms and proposed our OOM SVD algorithm, which reduces the

communication cost. We have presented theoretical analysis and strategies to design

CA OOM SVD algorithms, developed optimized implementation of CA OOM SVD

for multicore architecture, and presented its performance results.

When matrices are tall, performance of OOM SVD can be improved significantly

by carrying out QR decomposition on the original matrix in the first place. The upper
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triangular matrix generated by QR decomposition may fit in the main memory, and

in-core SVD can be used efficiently. Even if the upper triangular matrix does not fit

in the main memory, OOM SVD will work on a smaller matrix. That is why we have

analyzed communication reduction for OOM QR algorithm, implemented optimized

OOM tiled QR for multicore systems and showed performance improvement of OOM

SVD algorithms for tall matrices.
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Chapter 1

Introduction

1.1 Introduction

Singular value decomposition (SVD) problems are fundamental for many computa-

tional science and engineering applications. For example, in statistics SVD is directly

related to the principal component analysis method [38, 39]; in signal processing

and pattern recognition, it is used as an essential filtering tool, and for analysis of

control systems [52]. The SVD also plays a very important role in linear algebra. It

has applications in such areas as least squares problems [27, 25, 47], computing the

pseudoinverse [25], and computing the Jordan canonical form [28]. In addition, SVD

is used in information retrieval [41] for filtering and rank reduction of the term-by-

document matrix to minimize cost and improve efficiency of the retrieval, in solving

integral equations [37], in digital image processing [5], and in gene expression analysis,

in seismic reflection tomography [21, 8], and in optimization [6]. Some of these

applications require SVD for matrices that are too big to fit in a computer’s main

memory. The traditional SVD algorithms that require matrix data must be loaded

into main memory all at once before the computation begins either cannot solve

these problem or is not fast enough to solve it in limited time. In this dissertation
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we explore methods to solve SVD problems that are too large to fit in main memory

and therefore reside in external or internal storage.

The SVD problem [26] for a given m × n matrix A finds a diagonal matrix Σ of

size m× n and orthogonal (or unitary) matrices U and V of sizes m×m and n× n,

respectively, such that A = UΣV > (or A = UΣV H). The diagonal elements of Σ are

called singular values of A, and the columns of U and V are called its left and right

singular vectors, respectively. SVD decomposition of a dense matrix is computed in a

classical three-phase process [54]. 1. Reduction phase: orthogonal matrices Q and

P are applied on both the left and the right side of A to reduce it to a condensed form

matrix; hence, these are called two-sided factorization. Note that the use of two-sided

orthogonal transformations guarantees that A has the same singular values as the

reduced matrix, and the singular vectors of A can be easily derived from those of the

reduced matrix. 2. Solution phase: a singular value solver computes the singular

values and the left and right vectors Ũ and Ṽ T of the condensed form matrix. 3. Back

transformation phase: if required, the left and right singular vectors of A are

computed by multiplying Ũ and Ṽ T by the orthogonal matrices used in the reduction

phase. This reduction step is called bidiagonal reduction (BRD), and it has always

been the most expensive phase of the three. In multicore architecture, the reduction

phase consumes 90% of the overall run time when singular values are computed [49]

and required approximately 70% of the total run time when both singular values and

singular vectors are computed [49]. Because the reduction phase is the expensive

one in this dissertation, we have studied classical one-stage and two-stage algorithms

that reduce the general matrix to bidiagonal form and analyzed the communication

overhead in a heterogeneous memory system to design communication-avoiding Out

of Memory (CA OOM) SVD algorithms.
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1.2 Thesis statement and contribution

The primary goal of this dissertation is to design CA algorithms for OOM SVD. By

OOM we mean that the matrix is too large to fit in memory and therefore must

reside in external or internal storage. Since the whole matrix can not be loaded

into the computer memory all at once, parts of it must be loaded and sent back to

storage throughout the algorithm. Efficient algorithms need to be designed to hide

this communication overhead. The main contributions of this dissertation are as

follows:

CA OOM SVD:

• Analyzed communication cost on heterogeneous levels of memory system — for

example, CPU memory for in-memory computation and disk for OOM storage,

GPU/Coprocessor memory for in-memory computation, and CPU memory for

OOM storage; and investigated communication reduction from one-stage to

two-stage OOM SVD algorithms.

• Presented theoretical analysis and strategies to hide communication overhead

for OOM SVD, and provided the necessary conditions to develop CA algorithms.

• Designed CA OOM SVD algorithms and developed an optimized implementa-

tion for multicore architecture.

OOM SVD through OOM QR factorization:

When the matrix is tall and does not fit in the main memory, the original matrix is

factorized by QR factorization and SVD is computed from the R matrix, as both the

original matrix and R matrix have the same singular values. The R matrix may fit in

the main memory and classical SVD algorithm can be used directly; otherwise, OOM

SVD will handle the smaller matrix.

• Analyzed communication overhead for OOM tiled QR and implemented left-

looking tiled QR for multicore architecture.
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• Improved the performance of OOM SVD through OOM QR.

1.3 Outline of the dissertation

This dissertation is organized as follows:

• Chapter 2 introduces SVD and its application. It also represents classical SVD

algorithms and their complexity.

• Chapter 3 presents the theoretical analysis of SVD communication on the

heterogeneous levels of memory system and strategies to develop CA algorithms

for OOM SVD.

• Chapter 4 presents analysis to reduce communication for OOM tile QR and

performance improvement of OOM SVD through OOM tile QR for tall matrices.

• Chapter 5 concludes the dissertation and discusses possible future extensions.

4



Chapter 2

Background

2.1 Introduction

The singular value decomposition, or SVD, is a very powerful technique used

to deal with matrix problems in general. In recent years, the SVD has become an

essential tool for solving a wide variety of problems that arise in many practical

applications. The use of the SVD in these applications provides information about

the rank of a matrix, or approximates a matrix using a lower rank approximation, or

forms orthogonal bases for the row and column spaces of a matrix.

The SVD of an m× n matrix A is a factorization of the following form:

A = UΣV T (A = UΣV H in the complex case),

where U is an m×m and V is an n× n real or complex unitary matrix and Σ is an

m-by-n rectangular diagonal matrix with real elements, σi, such that:

σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0.

The diagonal entries σi of Σ are the singular values of A and the first min(m,n)

columns of U and V are the left and right singular vectors of A.
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The SVD is computed very effectively in the following three classical phases as

presented by Golub and Kahan in 1965 [24]:

1. The matrix A is reduced to bidiagonal form by applying successive distinct

transformations from the left (U1) as well as from the right (V1 ) as : A = U1BV
T
1

if A is real (A = U1BV
H
1 if A is complex), where U1 and V1 are orthogonal

(unitary if A is complex), and B is real and upper-bidiagonal when m ≥ n or

lower bidiagonal when m < n.

2. The SVD of the bidiagonal matrix B is computed: B = U2ΣV
T
2 , where U2

and V2 are orthogonal and Σ is diagonal as described above. There are several

algorithms to compute singular values from bidiagonal matrix but originally the

QR iteration is used.

3. If desired, the singular vectors of A are then computed as U = U1U2 and

V = V1V2.

The fist stage, which reduces the general matrix to bidiagonal form is called

bidiagonal reduction (BRD for short) and considered to be the most expensive phase.

The second phase computes singular values of bidiagonal matrix using the divide-and-

conquer iteration. Finally, the third phase computes corresponding singular vectors

from the reduced form using either the dqds algorithm [22] or Cuppen’s divide-

and-conquer algorithm [40, 29] of divide-and-conquer back-transformation. The QR

iteration [16, 15] is no longer used to compute singular vectors because it consumes

roughly 50% more time than the methods mentioned earlier.

The computation cost for bidiagonal reduction is O(8
3
n3), which makes it difficult

to design an efficient algorithm and develop an optimized implementation. Two main

approaches to solve these problems are as follows:

• One-stage approach: the standard one-stage approach as implemented in

LAPACK [3] applies Householder transformations in a blocked fashion to reduce

the dense matrix to bidiagonal form directly.
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• Two-stage approach: the two-stage approach applies blocked Householder

transformations [33] to reduce general matrix to band matrix in the first stage

and reduces band matrix to bidiagonal form using a bulge chasing technique in

the second stage.

2.2 One-stage bidiagonal reduction

The one-stage reduction of a matrix A to bidiagonal form as is implemented in

LAPACK applies orthogonal transformation matrices on the left and right sides of A.

As opposed to the one-sided factorizations (i.e., LU, Cholesky, QR/LQ), the computed

transformations are applied from both the left and right sides of A; therefore, it

is called “two-sided factorization.” The blocked bidiagonal reduction algorithm as

described in [20], can be summarized as follows:

To reduce a matrix A of size m × n to bidiagonal form, two orthogonal matrices

U1 and V1 are applied on the left and the right sides, respectively, B = UT
1 AV1. The

matrices U1 and V1 are represented as products of elementary reflectors:

U1 = H1H2 . . . Hn and V1 = G1G2 . . . Gn−1.

Each Hi and Gi has the form

Hi = I − τi,uuiuTi and Gi = I − τi,vvivTi ,

where τi,u and τi,v are scalars, and ui and vi are vectors. To block the computation

one can observe the computation for step i - HT
i AiGi, where Ai is the reduced matrix

A before step i. So,

(I − τi,uuiuTi )Ai(I − τi,vvivTi ) = Ai − uiyT − xvTi

7



Here x = τi,vAivi, z = τi,uA
T
i ui, and y = z − τi,u(u

T
i x)vi. Note that it is possible

to update only the current panel made of Ai’s leading block of columns and rows in

order to proceed with the computation and the application of the Hi+1 and Gi+1.

This is done by updating the remainder of the panel by x and y vectors. Thus, the

update is delayed, but at each step, two matrix-vector products (Aivi and ATi ui) that

require the access of the entire trailing matrix Ai are computed.

Figure 2.1: LAPACK one-stage blocked algorithm.

So, the LAPACK blocked algorithm has two computational steps: (1) the

panel factorization and (2) the update of the trailing submatrix. First, the panel

factorization processes a single block of columns and rows. The process annihilates

columns/rows of a panel by Householder reflectors that introduce zeros to the entries

below the subdiagonal. The corresponding left and right reflectors are saved in the

original matrix A, and the accumulation of the left and right transformations are

saved in two temporary storages X and Y. The accumulation requires two matrix-

vector operations and thus loads the whole unreduced trailing matrix into memory at

each step of the reduction algorithm. After factorizing the panel, the trailing matrix

is updated by two matrix-matrix multiplications. One multiplication requires the left

reflectors (V) and the accumulated transformations X, and the other multiplication

uses the right reflectors (U) and the accumulated transformations Y. The process is

repeated until the whole matrix is reduced to bidiagonal form.
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Figure 2.2: LAPACK one-stage blocked algorithm - used BLAS kernel.

In particular, for a square matrix of size n by n with a block size nb (for simplicity,

nb divides n) there are n/nb steps in the algorithm. At each step, the algorithm needs

2 × nb matrix-vector operations to accumulate X and Y. If l is the size of trailing

matrix at step s, then the cost of this operation is 2l2. As there will be a 2× nb such

operation, the total cost is 2nb× 2l2. The update of the trailing matrix at step s is,

As+nb:n,s+nb:n ← As+nb:n,s+nb:n − U × Y T −X × V T

If k is the size of the trailing matrix at step s. The cost of this update is the cost

of two matrix-matrix products using the gemm routine - 2× 2 nb k2. Thus the total

cost for the n/nb steps is:

≈ 4nb
n/nb∑
nb

l2 + 4nb

n−nb
nb∑
2nb

k2

≈ 4
3
n3
gemv + 4

3
n3
gemm

≈ 8
3
n3.

So, form = n, half of the operations are in Level 2 BLAS (matrix-vector products),

while the other half are in Level 3 BLAS. In conclusion, the bidiagonal reduction based

on blocked Householder transformations is expected to be about 2× faster than a
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non blocked Level 2 BLAS factorization — provided the Level 3 BLAS is significantly

faster than the Level 2 BLAS. This is the case for current accelerators and many-core

processors, where the ratio of Level 3 to Level 2 BLAS performance is about 30×,

and current trends show this ratio increasing for the foreseeable future.

The one-stage reduction to bidiagonal form described in section-2.2 has poor

efficiency. The panel factorization, which introduces zeros to the entries below

the sub-diagonal within a single block of columns, requires two matrix-vector

multiplications with the trailing sub matrix for each reflector and is thus memory

bound. This step is critical and time-consuming, as the whole trailing matrix is loaded

into memory twice for each column/row of the matrix. The performance is bounded

by memory bandwidth and does not scale up with the number of cores. Moreover,

one may get tremendous amount of cache and TLB misses for large matrices, as the

matrix will not fit in cache. The trailing sub matrix is then updated by the blocked

reflectors using Level 3 BLAS — matrix-matrix multiplications (GEMM). This is

the only computational step in one-stage reduction algorithms that is computation

intensive and rich in parallelism. Unfortunately, update of the trailing sub matrix

is synchronized with panel factorization, which prevents asynchronous execution of

memory-bound and compute-bound steps. Figure 2.3 shows the percentage of the

total time spent for each of the three phases of the SVD algorithm using the standard

one-stage reduction approach when all the singular vectors are computed. From

Figure 2.3 it is clear that the reduction to the bidiagonal form requires more than

70% of the total execution time when all the singular vectors are computed and

consumes 90% of the total execution time when only singular values are computed.
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Figure 2.3: The percentage of the time spent in each kernel of the DGESDD solver
using the standard one-stage approach to compute the bidiagonal form.

2.3 Two-stage bidiagonal reduction

The two-stage reduction is designed to overcome the limitations of the one-stage

approach and reduces memory-bound operations. It now relies heavily on compute-

intensive operations so that performance scales up with CPU core count. As the

name implies, the two-stage approach splits the original one-stage approach into two

phases — the first phase(first stage) reduces the general matrix to band form and the

second phase (second stage) reduces the band matrix to bidiagonal form as shown

in Figure 2.4. The first stage is compute intensive and heavily depends on Level 3

BLAS, whereas the second stage is memory bound and depends on Level 2 BLAS.

The idea behind the first stage, which reduces the general matrix to band form, is
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based on the tile algorithm. Before moving to the details, we will talk about tile

algorithms.

Figure 2.4: Two-stage bidiagonal reduction

2.3.1 Tile algorithms

Tile algorithms are based on the idea of dividing the entire matrix into square tiles of

relatively small sizes and process the matrix tile by tile. The rationale is that the few

tiles (one, two, or three) that are involved in a particular matrix operation fit entirely

in some level of the cache hierarchy so that capacity cache misses can be mostly

eliminated. The motivation for tile algorithms came from the desire to extend the

performance benefit matrix multiplication gets by tiling the multiplication algorithm.

The great advantage of tile algorithm is it allows the expression of the algorithm in

the form of a task graph, Direct Acyclic Graph (DAG), that can be scheduled by

dynamic scheduler using dataflow principles [10, 46, 35].

The benefits of tile algorithms on multicore processors were initially demonstrated

for the one-sided factorization (Cholesky, LU and QR in [42, 11, 13, 45]) and later

extended for bidiagonal and tridiagonal reduction algorithms for the solution of the

singular value and the symmetric eigenvalue problem. The application of Householder

transformations by tiles reduces the general matrix to band form, but successive
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elimination of the sub diagonal entries by a series of Householder transformations [48,

51, 33, 34, 50, 49] is required to generate the proper form.

Figure 2.5: Translation from LAPACK layout (column major) to tile data layout.

The fundamentals behind tile algorithms are to transform the original matrix to

tile data layout (TDL) [30] format as shown in Figure 2.5. The entire matrix is divided

into square sub matrices called tiles. Each tile of the matrix resides in contiguous

region of memory so that translation between tile layout and FORTRAN 77 layout

can be done in place. Gustavson et al. [31] developed a collection of routines to

translate FORTRAN 77 layout to tile layout and vice versa that are distributed as

part of the PLASMA library[55].

The dramatic fine-grained parallelism exposed by tile algorithms can be exploited

by designing an efficient scheduler that will maintain data dependencies while

scheduling them in parallel fashion. This has been done for both one-sided

factorizations in [11, 13, 2, 46, 1, 35, 17, 18, 19], as well as the more complicated two-

sided ones in [48, 51, 33, 34, 50, 49]. But constructing such schedules by manipulating

loop indexes and maintaining dependencies using progress tables are tedious and error

prone. The QUeuing And Runtime for Kernels (QUARK) [56] system, developed at
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the University of Tennessee, overcomes these problems by constructing a virtual DAG,

or task graph, of the problem and exploring the tasks in the order organized in DAG.

2.3.2 First stage — compute intensive

The first stage reduces general matrix to band form using a sequence of blocked

Householder transformations. This stage eliminates matrix-vector operations from

the one-stage and depends on matrix-matrix multiply kernels. That is why the first

stage is compute intensive and can be run in parallel [7, 20, 23, 36]. Conceptually,

the matrix is split into nt × nt tiles for a matrix of size n × n with tile size nb

where nt = n/nb. As the tiles are small in size, the entire tile fits in cache and

is stored contiguously in memory. The algorithm then proceeds as a collection of

interdependent tasks that can be scheduled by both static and dynamic scheduler. In

Algorithm-1 we have shown the tile algorithm for the reduction of general matrix to

band form. Eight compute-intensive kernels are used in the algorithm.

– DGEQRT/DGELQT perform a QR factorization of diagonal tile and an LQ

factorization of a sub or super diagonal tile, respectively.

– DORMQR/DORMLQ apply the orthogonal transformations computed from

DGEQRT/DGELQT to the left/right sides, respectively.

– DTSQRT/DTSLQT compute a QR and an LQ factorization by coupling a

triangular tile (upper if QR, lower if LQ) with a corresponding full square tile.

– DTSMQR/DTSMLQ apply the orthogonal transformations computed from

DTSQRT/DTSLQT to the left/right sides, respectively, of the entire trailing

matrix.
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Algorithm 1: Tiled algorithm to reduce general matrix to band form

for s = 1 to nbtiles do

GEQRT (A(s, s))

for j = s+ 1 to nbtiles do

UNMQR(A(s, s), A(s, j))

end

for k = s+ 1 to nbtiles do

TSQRT (A(s, s), A(k, s))

for j = s+ 1 to nbtiles do

TSMQR(A(s, j), A(k, j), A(k, s))

end

end

if (s < nbtiles) then

GELQT (A(s, s+ 1))

for j = s+ 1 to nbtiles do

UNMLQ(A(s, s+ 1), A(j, s+ 1))

end

for k = s+ 2 to nbtiles do

TSLQT (A(s, s+ 1), A(s, k))

for j = s+ 1 to nbtiles do

TSMLQ(A(j, s+ 1), A(j, k), A(s, k))

end

end

end

end

For a tile of size b and n×n tiled matrix, Table 2.1 below shows the computation

cost for reducing general matrix to band form. In terms of flop count, TSMQR

routine is the most expensive kernel and consumes the most flops.
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Table 2.1: Computation cost for kernels use to reduce a general matrix to band
form

Kernel Computation cost Total cost for n× n tile matrix

GEQRT/GELQT 2b3 O(n)× 2b3

ORMQR/ORMLQ 3b3 O(n2)× 3b3

TSQRT/TSLQT 10
3
b3 O(n2)× 10

3
b3

TSMQR/TSMLQ 5b3 O(n3)× 5b3

(a) QR factorization of tile A2,2 (b) LQ factorization of tile A2,3

Figure 2.6: Kernel execution of the BRD algorithm during the first stage.

Figure 2.6 shows the execution foot print for the second step of the first stage of

reduction algorithm. A QR factorization is computed for the tile A2,2 (the red tile).

When this QR factorization is finished, all the tiles right to A(2, 2) are updated in

parallel. Update of A2,• (the grey tiles of Figure 2.6a) are performed by applying

the Householder transformations that are generated by the QR factorization of A2,2.

Simultaneously, all the tiles A•,2 (the magenta tiles of Figure 2.6a) can also be

factorized independently one after another, as all of them require the use of R of

A2,2. After the QR factorization of tile Ai,2 (the dark magenta tile of Figure 2.6a), all
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the tiles of the block row i (the dark yellow tiles of Figure 2.6a) are updated by a set of

parallel tasks. Update of tiles from row i also requires to access tiles from the second

row. Moreover, when A2,3 is updated, LQ factorization can now proceed for this tile

(the green tile of Figure 2.6b). Just like the QR process, after LQ factorization, all the

tiles in the third column (A3:nt,3 [the grey tiles of Figure 2.6b]) are now independently

updated by the Householder vectors computed during LQ factorization, provided that

updates of these tiles are done for QR factorization. Similarly, all the tiles (A2,4:nt

[the light cyan tiles of Figure 2.6b]) can also be factorized, and annihilation of A1,i

(the dark blue tile of Figure 2.6b) enables update of the tiles from block column i

(the dark yellow tiles of Figure 2.6b).

The interleaving of QR and LQ factorization at each step as explained above for

the execution flow repeats until the end of the algorithm. At the end, it generates

a band matrix of band size nb. It must be noted that the tile formulation of the

algorithm creates many small tasks that can be executed in parallel. Usually the tasks

tasks are organized into a DAG [9, 14] where the nodes represent the computational

tasks and the edges represent the data dependencies among them. The tasks are then

executed in parallel without violating their dependencies. Such restructuring of the

algorithm as a sequence of tasks that operate on tiles of data removes the fork-join

bottleneck of LAPACK and increases the overall performance efficiency.

2.3.3 Second stage

In the second stage, the band form is further reduced to bidiagonal form using the

bulge chasing technique. This procedure chases the fill-in elements created during

the annihilation process of the extra off-diagonal element and annihilates them using

orthogonal transformation at each sweep of the algorithm. This step is memory

bound and accesses the band matrix from multiple disjoint locations, which creates

substantial latency overhead as different portions of the matrix are loaded into

the cache. Unfortunately, there is too little computation to overcome this latency
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overhead. A novel bulge chasing algorithm described in [32] overcomes these critical

limitations. The bulge chasing technique is similar to the one used for symmetric

eigenvalue problems in [33] but differs from it in using a column-wise elimination

instead of an element-wise elimination. When singular vectors are computed a

column-wise elimination method has great advantage over element-wise elimination.

In particular, singular vectors are updated by element-wise Householder reflectors

based on BLAS 1 operations, which presents a serious bottleneck for performance

improvement. On the other hand, a column-wise elimination method accumulates the

transformations and updates the singular vectors using Level 3 BLAS. As a result,

the update is faster and more efficient.

The bulge chasing algorithm has three cache-efficient kernels. The main goal of

the kernel is to load the block of the matrix in cache and apply all the possible

computations before being replaced by another block. The first kernel is called

xGBCW1, which manipulates the green block of data as shown in Figure 2.7a. It

annihilates the extra non zero entries within a single row and applies the computed

elementary Householder reflector from the right. This annihilation process triggers

a new bulge (triangular bulges as shown in Figure 2.7a [the black block]) that is

chased in a subsequent sweep. One can notice that a bulge (lower triangular portion

of the green block in Figure 2.7d) created in one sweep overlaps with the bulge (lower

triangular portion of the blue block in Figure 2.7d) created in the next sweep. Instead

of eliminating the whole triangular bulge elimination of the overlapped portion is

delayed for later sweep and the non overlapped portion is eliminated in the current

sweep. The second kernel is xGBCW2, which loads the next block and applies the

necessary left updates derived from the first kernel. It also generates triangular bulges

as shown in Figure 2.7b. Finally, the third kernel is xGBCW3. It loads the next

block (the third green block of Figure 2.7c) and applies the right updates derived

from kernel 2. Like kernel 1, kernel 3 generates a bulge that is removed and updated

correspondingly from the left. So the single sweep of the bulge chasing process can be
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described as a single call of kernel 1 followed by repetitive call to a cycle of kernel 2

and kernel 3.
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Figure 2.7: Kernel execution of the BRD algorithm during the second stage.

The main challenge for this stage is to track dependencies among the tasks. Tasks

from one sweep use partial data from the previous sweep. Dependencies among the

computation tasks from subsequent sweeps are tracked using the data translation
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layer (DTL) and functional dependencies described in [51, 33]. To reduce memory

traffic, the same thread is assigned the subsequent tasks that involve the same region

of data. Scheduler ensures maximum reuse of data by distributing the tasks according

to their data location.

2.4 System and disk information

We have used a few different systems to run our experiment. In Table 2.2 we have

shown the details of the machine we used.

Table 2.2: Machine configuration

Sandy Bridge

Xeon 5-2670,

Western Digital

Haswell

i7-5930K,

Samsung SSD

Haswell

Xeon E5 2650V3,

Seagate Constellation

Clock 2.6 GHz 3.5 GHz 2.3 GHz

Core 16 6 10

Memory 52 GB 32GB 32GB

Cache 20 MB 15 MB 25 MB

Peak performance 330 Gflop/s 336 Gflop/s
368 - 480

Gflops (with boost)

Disk

Western Digital

WDC1002FAEX

931G

Samsung

SSD EVO

465G

Seagate

Constellation ES.3

1000G

We have also considered the following accelerators (GPU) and coprocessors for

our theoretical analysis.
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Table 2.3: Accelerator and coprocessor

NVIDIA

K40,

PCIe 8x

NVIDIA

P100,

PCIe 8x

Xeon Phi

KNC,

PCIe 8x

Xeon Phi

KNL,

PCIe 8x

Clock 745 MHz 3.5 GHz 1.2 GHz 1.30 GHz

Core 15(SMX) 56(SMX) 61 64

Memory 12 GB 16GB 16 GB 16 GB

L2 Cache 1536 KB 4096 KB 30.5 MB 32 MB

Peak

performance
1430 Gflop/s 5300 Gflop/s 1208 Gflop/s 3000 Gflop/s

Hard disk drives (HDD) have been used for data storage in high-performance

systems for decade. Recently, the flash-memory-based Solid State Drive (SSD) has

become an emerging technology and started to gain prominence for faster read access,

low power consumption, small size, and reliability compared with hard disks. That’s

why we consider both HDD and SDD for the experiment and theoretical analysis

of our OOM SVD solver. Table 2.4 shows detailed information about the disks

we used for our experiment. As disk bandwidth is extremely important to design

and implement OOM algorithms, we have benchmarked HDD/SDD’s sequential

read/write bandwidth using both the dd and hdparm utilities from Linux. We have

also benchmarked random read/write bandwidth of the disks. To do that, we accessed

random tiles of a u × v tile matrix residing in the disk. We generated a random

number, r, between 1 and u ∗ v and accessed (r mod u, r
u
) tile of the matrix for

read/write. In Table 2.4 we have shown the bandwidth we are supposed to achieve

for both sequential and random disk access to the disk.
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Table 2.4: Disk bandwidth information

WDC1002FAEX Samsung SSD EVO
Seagate Constellation

ES.3 ST1000NM0033

Size 931B 465G 1000G

Peak sequential

read/write

bandwidth

150 MB/s 540 MB/s 175 MB/s

Sequential

read/write

bandwidth

50 MB/s 450-470MB/s 150 MB/s

Random

read

bandwidth

12 MB/s 200 MB/s 70 MB/s

Random

write

bandwidth

12 MB/s 90 MB/s 70 MB/s
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Chapter 3

OOM SVD

The SVD for a m× n matrix A finds two orthogonal matrices U , V , and a diagonal

matrix Σ with non-negative numbers, such that A = UΣV T . The diagonal elements

of Σ are called the singular values, and the orthogonal matrix U and V contains the

left and right singular vectors of A. As described above, SVD is solved by a three-

phase process: 1) Reduction phase: orthogonal matrices Q and P are applied on both

the left and the right side of A to reduce it to a bidiagonal form matrix, B. 2) Solver

phase: then the singular value solver computes the singular values Σ, and the left

and right singular vectors Ũ and Ṽ T of the bidiagonal matrix B. 3) Singular vector

update phase: if required, the left and the right singular vectors of A are computed by

multiplying Ũ and Ṽ T by the orthogonal matrices Q and P used to reduce the general

matrix to bidiagonal form in the reduction phase. In this work, we are interested in

the computation of the singular value only.

3.1 Introduction

When the matrix A is too large and does not fit into the system memory, we have

to find a technique to perform the computation while A is out of memory (A could

be in the Hard Drive disk, flash memory, fast buffer, CPU memory when the GPU

or the XeonPhi is considered to be the system etc...), that’s what we call OOM
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algorithm. The bottleneck of the SVD computation is the first phase where we have

to reduce the dense matrix A to bidiagonal form. Once it is bidiagonal, it consists

of two vectors, and thus it will fit into the memory and the singular value solver will

be able to compute its singular value in memory. If the singular vectors are needed,

they will require an OOM technique, but this case is not studied here, we focus on

the computation of the singular values. As a consequence, the main focus should

be on the reduction phase. To reduce a general matrix to bidiagonal form we can

use either the standard approach, which is implemented in LAPACK (we call it a

one-stage algorithm since it reduces the matrix from dense to bidiagonal in 1 step),

or the two-stage algorithm implemented in PLASMA, which reduces the matrix in

two steps, first to band form then to bidiagonal form.

Since, A reside out of memory, communication between disk and memory, and

bandwidth of the disk will have high impact on the overall run time of any OOM

algorithm. Thus, a careful understanding and study of the computational process and

the communication pattern is required in order to propose a successful and optimized

design. Below, we will explain the details of each algorithm, as well as evaluate and

prove the optimal design in order to implement it in an OOM fashion.

3.2 An analytical study of the communication cost

of data movement

In this section we studied the communication pattern for the OOM reduction to

bidiagonal form. We will provide analysis for the two techniques (one-stage vs, two-

stage) and propose and discuss our design decision that minimizes the communication

cost.

As described in section 2.2 and detailed in Equation (2.2), the one-stage bidiagonal

reduction needs two matrix-vector operation (GEMV) with the trailing matrix at

every column/row annihilation and one matrix-matrix operation (GEMM) after every
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panel reduction. Thus, when the matrix is large and does not fit into the main

memory, it will need to be loaded from the disk two times for every column/row

annihilation for the GEMV operation and two times after each nb column (e.g., after

each panel) for the GEMM operation. In every case the matrix is sent back to disk.

The algorithm will requires 2(m × nb + n × nb) as in memory workspace to hold

the panel (U and V ) and the arrays X and Y of Equation (2.2). Therefore, for a

m× n matrix the amount of words to be read and written (e.g., the amount of data

movement) is given by the following formula:

Read A for dgemv 1 + Read A for dgemv 2 + Read/Write A for dgemm

=
n−1∑
s=0

(m− s)(n− s) +
n−1∑
s=0

(m− s)(n− s− 1) + 2

n/nb∑
s=1

(m− s× nb)(n− s× nb)

= (2
n−1∑
s=0

(m− s)(n− s)−
n−1∑
s=0

(m− s)) + 2

n/nb∑
s=1

(m− s× nb)(n− s× nb)

= mn2 − n3

3
+
n2

2
−m+

5n

6
− 1 +

mn2

nb
−mn− n3

3nb
+
n

3
× nb

For a m×m matrix, the amount of word movement is:

2

3
m3 +

m2

2
− m

6
− 1 +

2m3

3nb
−m2 +

m

3
× nb

≈ 2

3
m3 +

1

nb
× 2

3
m3

On the other hand, PLASMA uses a two-stage approach: (1) In the first stage

it reduces the general m × n matrix to a band form of size min(m,n)×nb. (2) In

the second stage, it reduce the band to bidiagonal form. Note that for a small nb

the whole band matrix of size min(m,n)× nb will fit into the memory and thus the

second stage can run efficiently in memory. Thus the first stage (e.g., reduction from

dense to band) need to be performed in OOM fashion. As a result, for a m×n matrix
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and band size nb, the amount of data movement is given by:

Read/Write A for QR + Read/Write A for LQ

= 2×
n/nb−1∑
s=0

(m− s× nb)(n− s× nb)

+ 2×
n/nb−1∑
s=0

(m− s× nb)[n− (s+ 1)× nb]

= 2nb2 × (
mn2

nb3
− n3

3nb3
+

n2

2nb2
− m

nb
+

5n

6nb
− 1)

≈ 2

nb
(mn2 − n3

3
)

For m×m matrix amount of data movement is given by:

2

nb
× 2

3
m3

=
1

nb
× 4

3
m3

From this formulation, one can easily observe that the classical one-stage algorithm

for the reduction to bidiagonal requires O(m3) more word transfer between the system

memory and the disk than two-stage approach. This is a huge amount of extra

communications that will dramatically affect the performance. To highlight the

importance of the communications, let’s start by giving an example: for a matrix

of size m = 100, 000, the classical one-stage algorithm will need 2
3
m3 + 1

nb
× 2

3
m3

words movement. In double-precision arithmetic, for recent hardware such as Hard

Drive, Solid State Drives (SSD), or out of GPU memory where the communication

bandwidth is about 150 MB/s, 500 MB/s, and 8 GB/s, respectively, the standard

one-stage technique will require 411, 123, and 7.72 days, respectively to perform

the reduction. The two-stage technique will need approximatively 1
nb
× 4

3
m3 words

movement and thus in double precision it necessitates 5.14, 1.54 and 0.09 days,

respectively, for nb equal 160. We mention that the one-stage approach requires
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the communication of 2
3
1015 extra words, and for that we can easily expect this huge

difference.
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Figure 3.1: Time comparison between one-stage and two-stage algorithms.

As consequence, it is unacceptable to propose the one stage as an OOM algorithm.

For that reason as well, it has always been known not to be practically possible to

have an OOM SVD implementation. Moreover, to emphasize the choice of the two-

stage approach, let’s consider that the matrix will fit into the main memory. Then

a one-stage approach will require approximately 2
3
m3 + 1

nb
× 2

3
m3 words movement

between the main memory and the cache levels. For a recent hardware like the

Intel Haswell E5-2650 v3 multicore system achieving a bandwidth of about 60GB/s,

about 24.71 hours are necessary to finish the reduction to bidiagonal form in double-

precision arithmetic, while the two-stage algorithm needs approximately 1
nb
× 4

3
m3

words movement and thus requires about 0.31 hours for nb equal 160. If the matrix

is read from SSD or HDD, more time is needed as compared with data read from

memory because of poor bandwidth. In Figure 3.1 below we have compared the

time required to reduce a general matrix to bidiagonal form between one-stage and
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two-stage algorithms for different matrix sizes when the matrix reside in SSD. For

example, for a 100000×100000 matrix one stage will take 124.22 days compared with

1.54 days by a two-stage algorithm.

3.3 A theoretical study of the design of an OOM

SVD solver

In this section, we will proceed with the theoretical analysis of the OOM algorithm and

we will provide a detailed study of the communication pattern required by the OOM

algorithm, as well as discuss and propose design strategies proving its optimality in

terms of data movement and performance. In this work, we decided to comply with

the proof of the previous section, which states that the only possible path for an

OOM SVD solver is the two-stage approach. The reduction from dense to band form

is thus the main component that needs to be studied and implemented as an OOM

algorithm. An OOM algorithm, mean that the data on which the computation should

happen is out of the main memory (e.g., either on disk, fast buffer, or out of the device

memory in the case of when we consider the GPU as the main memory) and thus

need to be loaded into the main memory by block, performing some computation

and then sent back in order to allow another block to be loaded. For simplicity of

description, our terms will follow the well-known historical OOM description where

the matrix is on disk (OOM storage) and the CPU DRAM is considered to be the main

memory. However, the formulation and theorem proved here can be applied to any

OOM design, such as when the CPU DRAM is the main memory and the fast buffer

is the OOM storage, or when a GPU/Xeon Phi is considered as the main memory and

the CPU is the OOM. That is why the overall performance of the OOM reduction

of general matrix to band form depends on the efficiency of minimizing or possibly

hiding the communication overhead between the disk and the main memory. The

widely used linear solver consisting of either cholesky, LU, or QR factorization can be
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implemented in a left-looking fashion, which means that data can be modified only

once during factorization, and thus we can consider overlapping communication with

computation. In contrast, we will see below that this is not possible for eigenvalue

and singular value solver since they involve a two-sided process that modifies all the

data of the trailing matrix at every step of the reduction.

3.3.1 A study of the communication/computation ratio

We will study and formulate theorem to answer one main question for any OOM

algorithm, which is: in what circumstances, if there is any, we can hide communication

overhead? and what is it’s impact on the design of an out-of-memory algorithm?

The idea here is to analyze the possibility of hiding the data transfer with the

computations. To hide the communication overhead, the technique is that, if the

computation is happening on data of block k, we need to write back the data of block

k−1 and read the data of block k+1 in less or equal time to the computation task on

the data of block k. As the two-stage algorithm works on tiles [32], our consideration

is what tile size can be used in order to hide communication overhead between disk

and memory. The main and the most time-consuming type of task of the two-stage

algorithm is the update task (e.g., the TSMQR). Let’s focus the description on this

type and the substitution to other type will be implicitly easily derived. Figure 3.2

shows two scenarios for the TSMQR tasks: (1) All the threads are participating

in the computation of a single task — call it multi-threaded single task. To hide

communication, we have to write back the tile computed previously (pink color) and

bring the next tile (cyan color) in memory in less time than the computation of the

current tile (red color). (2) Each thread works on a separate tile — sequential multi-

task. If there are p threads, we have to write back the previously computed “p” tiles

and load the next “p” tiles for the next computation while computation is happening

on the current p tiles.
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Figure 3.2: Reduction of general matrix to band form — update (multithreaded
single task vs single-threaded multitask)

Theorem 3.1. For the OOM SVD two-stage reduction algorithm, in order to overlap

data communication with computation, the tile size b should be at least
3.2α

BW
, .i.e.

b ≥ 3.2α

BW
, where BW is the communication bandwidth and α is the computational

performance efficiency of the system.

Proof. First, let’s consider the case when all the threads are working on a single

task as shown in Figure 3.2 (left). A tile of size b consists b2 elements, 8b2 bytes in

double precision arithmetic. We will use the DP arithmetic representation for all the

subsequent formulations. Assuming that the write bandwidth is similar to the read

one, the time to read, tread, or to write, twrite, a tile of size b is given by:

tread = twrite =
8b2

BW
s

where BW is the bandwidth of the transfer between disk and memory. The

computation cost, which is the update cost (the TSMQR routine), for a tile of size b
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is 5b3 flops. The time to compute, tcompute, is given by,

tcompute = tupdate =
5b3

α

where α is the performance efficiency in flops of the operation that has to be performed

(the TSMQR is the case that reaches about 80%-85% of the machine peak). To hide

the communication overhead, the necessary condition is as follows:

tcompute ≥ tread + twrite

=>
5b3

α
≥ 16b2

BW

=> b ≥ 3.2α

BW

Now consider the case where tasks are running in parallel (Figure 3.2 [right]) and

each thread is working on a separate tile. If p tasks run in parallel, p tiles are brought

to memory and sent back to disk after computation. So,

tread = twrite =
p× 8b2

BW
s

The time for computation, tcompute is given by

tcompute =
5b3

α
p

=
p× 5b3

α

To overlap computation with read/write,

tcompute ≥ tread + twrite

=>
p× 5b3

α
≥ p× 16b2

BW

=> b ≥ 3.2α

BW
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Table 3.1: Tile size for hiding communication time by computation for an OOM
SVD solver

System

Communication

bandwidth BW

(GB/s)

DGEMM

performance

(Gflop/s)

Update kernel

performance

(Gflop/s)

Minimum tile size

to hide

communication

Sandy Bridge

Xeon E5-2670

WDC1002FAEX

0.05 300 250 16000

Haswell

i7-5930K

Samsung SSD EVO

0.5 280 200 1280

Haswell

Xeon E5 2650V3

Seagate Constellation

ES.3 ST1000NM0033

0.15 440 300 6400

Tesla K40

PCIe 8x
8 1200 960 384

Tesla P100

PCIe 8x
8 4700 3760 1504

KNC 7120P

PCIe 8x
8 960 768 308

KNL 7290

PCIe 8x
8 2000 1600 640

Table 3.1 shows the minimum tile size, ”b”, required to completely hide the

communication overhead with the computation time for the system we outline in

Table 2.2. The higher the ratio of computation, the larger the required tile size to

overcome the communication time. For example, a Sandy Bridge machine having a

computational performance α = 250 Gflop/s connected to an HDD with a bandwidth

of 50 MB/s requires the tile to be of size 16000. Such a big tile size is not reasonable

because of the following:
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• The tile size defines the width of the reduced band matrix of size (n× b), such

that the band matrix may not fit in memory for the second stage.

• Even if the band matrix fits in memory, the second stage (reduction from band

to bidiagonal form) of the algorithm will be extremely inefficient and adversely

affect the overall run time.

Performance of two-stage OOM SVD can be estimated by the roofline model of

the TSMQR routine, assuming the tile is read directly from and written back to disk.

For double-precision data the DTSMQR routine computes 5b3 flops for a tile of size

b, and communicates 16b2 bytes of data for read and write. In short, the DTSMQR

routine computes 5b3 flop for 16b2 byte data. The arithmetic intensity (i.e. the flop-

to-byte ratio for the DTSMQR routine is 5b
16

. If the system has bandwidth BW ,

performance of two-stage OOM SVD is computed by multiplying arithmetic intensity

by system bandwidth (i.e., 5b×BW
16

). Figure 3.3 shows the performance of an OOM

SVD solver for a different tile size when tile is accessed directly from the disk.

Figure 3.3 shows peak performance is not achievable with a small tile size. At

the same time, the big tile size that is required to reach peak performance is not

affordable. So, it can be concluded that performance of an OOM two-stage algorithm

will be bounded by disk bandwidth if data is accessed directly from the disk.
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Figure 3.3: Achievable performance for an OOM SVD solver.
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3.3.2 A study to utilize main memory to hide communication

overhead

The entire matrix may be too large to fit in memory, but some tiles definitely fit in

there. When tiles are in memory, execution is faster than reading from disk. Some

tiles might be loaded into memory at the beginning of the algorithm and other tiles

are communicated back and forth between memory and disk as shown in Figure 3.4.

We want to study whether data movement time for green tiles (in Figure 3.4 can be

hidden by computation for both green and read tiles and in what circumstances it

will be feasible.

Figure 3.4: Dividing the matrix into memory and disk to hide communication
overhead

Theorem 3.2. For the OOM SVD two-stage reduction algorithm, in order to overlap

data communication with computation, the ratio of tiles in the disk, nt1, to the tiles

in memory, nt2, should be 1
3.2α
b×BW −1

, where nt, nt = nt1 + nt2, size of the matrix in

number of tiles for tile size b, BW is the communication bandwidth and α is the

computational performance efficiency of the system.
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Proof. Time for computation, tcompute is:

tcompute = computation for nt1 tiles + computation for nt2 tilse

=
nt1 × 5b3 + nt2 × 5b3

α

=
nt× 5b3

α

nt1 tiles are communicated between disk and main memory. Time for communication,

tread+write is:

tread+write =
nt1 × 16b2

BW

To hide communication overhead:

tread+write = tcompute

=>
nt1 × 16b2

BW
=
nt× 5b3

α

=> nt1 =
b×BW × nt

3.2α

And,

nt2 = nt− nt1

=> nt2 =
3.2α− b×BW

3.2α
× nt

So,

nt1
nt2

=
1

3.2α
b×BW − 1
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If α� BW , 3.2α
b×BW � 1 always for small tile size. For a Haswell E5 2650 machine

having 150MB/s HDD bandwidth, ratio of tiles in disk to tiles in memory, nt1
nt2

= 1
49

for tile size 128, to hide data communication with computation. That means 98%

of the matrix must be in memory to hide data movement cost for the tiles that are

in disk. For big matrices, 98% of the matrix might be too large to fit in memory.

So, it might not be possible to hide data movement cost completely. Holding tiles in

memory will help to overlap some portion of the communication time with execution

time of the tiles in memory but not completely.

Theorem 3.3. For the OOM SVD two-stage reduction algorithm, computation of

nt2 tiles in memory overlaps communication of nt2 ×
b×BW

3.2α
tiles back and forth

between CPU memory and disk, where b is the tile size, BW is the communication

bandwidth and α is the computational performance efficiency of the system.

Proof. Computation time for nt2 tiles, tcompute is:

tcompute =
nt2 × 5b3

α

Time to read and write, tread+write, of a tile of size b is:

tread+write =
16b2

BW

So, number of tiles that can be brought to memory and sent back to disk:

tcompute
tread+write

=

nt2 × 5b3

α
16b2

BW

= nt2 ×
b×BW

3.2α
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For the Haswell E5 2650 machine, the number of tiles that can be brought to

memory and sent back to disk is nt2 × 1
50

for tile size 128. That means we can only

read and write one tile while computing on 500 tiles. If we have 10000 tiles for a

matrix and keep 1000 tiles in memory and 9000 tiles in disk then, while computing

on 1000 tiles we can read and write only 20 tiles. For the rest of the 8880 tiles we

have to pay the cost of reading and writing.

From theoretical analysis we can conclude that,

1. An OOM two-stage reduction algorithm requires a big tile size to hide the

communication cost with the computation completely. Such big tile size is

not possible to use because tile size defines the band of the reduced matrix.

Performance of the second stage (reduction of band matrix to bidiagonal form)

heavily depends on band size, which is b in this case, because of its memory-

bound operation and potential to negatively affects overall performance.

2. Computation on tiles loaded into memory hides a very small portion of

communication cost and the streaming of tiles for subsequent computation is not

possible. Thus, the overall performance is bounded by the amount of reading

and writing of tiles from the disk.

3.4 Algorithmic design

From section 3.3 we know that we can hide a very small portion of the communication

cost by the computation. The OOM linear solver algorithms (such as Cholesky,

LU factorization, and QR decomposition) involve on-sided factorization and are

implemented in an OOM left-looking fashion, which will allow the modification of

only block of data at each step of the process. Thus, their communication can be

overlapped with the computation. In contrast, the reduction algorithm is from the

two-sided factorization family ( of which the tridiagonal, bidiagonal, and Hessenberg

reductions are members). The reduction algorithms need to modify all the data of the
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trailing matrix at every step of the process, meaning they are bound by the number

of reading and writing of tiles from the disk. So, in this section, our goal is to analyze

and study the possibility of optimizing amount reading and writing, which in turn

will reduce the communication overhead. If main memory can not hold more than

four tiles, then no optimization is possible. The algorithm needs to use a maximum

of four tiles or thus the data will fly back and forth from the disk during execution.

If enough space exists for more than four tiles — which is the practical and realistic

case, since it is unrealistic to expose a system that has only space for four tiles[only

about 1.2MB of memory] then careful attention to the design is required to reach an

optimal solution time.

As we are reading and writing data in tile granularity, our algorithm design

determines which tiles are used most and holds them in memory until they are not

used any more. The number of times tiles are requested in the reduction process

depends on the order they are accessed and processed. For example we can process

the algorithm in row-wise or column-wise data flow fashion. This can be viewed as

something similar to the left and right-looking process used in one-sided factorization.

3.4.1 Proposition 1 — imposing parallel data flow

Our first algorithmic design follows a data flow fashion that increases the number

of parallel tasks by prioritizing parallel task flow to locality. Algorithm 2 gives the

details of its implementation, and Figure 3.5 illustrates the fingerprint of the dataflow

pattern during one step. The reduction process consists of a QR sweep followed by an

LQ sweep at each step of the process. Once the QR (the task modifying the green tile

of Figure 3.5) is terminated, it enables all the magenta tiles to be updated in parallel.

Thus, an algorithm that prioritizes all the tasks applied to left (tasks affecting the

magenta tiles) are submitted, as well as the QR factorization (TSQRT) of the red

tiles. For every TSQRT, the algorithm enables all the yellow tasks to run in parallel,

and so our first proposition will submit all of these tasks to run in parallel. Similarly
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to the QR sweep, the LQ sweep wil allow all the tasks touching the magenta tiles to

run in parallel, as well as the ones touching the yellow one. One can notice that in

the QR sweep, the tiles of row “step” (magenta or yellow of the top row typed with

“M” ) are modified by all the tasks. Let’s call them the master tiles for the QR of

sweep “step”. Similarly, for the LQ sweep for the tiles of column “step+1”, they are

the master tiles for the LQ sweep “step”. Thus, on a restricted memory system, the

algorithm might be obliged to write back some of the master tiles in order to load the

other master tiles to continue the same operation. As a result, for the next yellow

update, the master tiles will be loaded/stored again and so on. Now, if we count

the number of times tiles are used for reading and writing in Algorithm 2, Table 3.2

belows shows it for a u × v tile matrix. Each tile is used an equal number of times

for reading and writing in Algorithm 2.

Figure 3.5: Algorithm 1 — an OOM reduction of a general matrix to band form
(prioritize parallel task flow to locality).
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Algorithm 2: OOM reduction of general matrix to band form (prioritize parallel
task flow to locality)

for s = 1 to nbtiles do
READ A(s, s)
GEQRT (A(s, s))
for j = s+ 1 to nbtiles do

READ A(s, j)
UNMQR(A(s, s), A(s, j))
WRITE A(s, j)

end
for k = s+ 1 to nbtiles do

READ A(k, s)
TSQRT (A(s, s), A(k, s))
for j = s+ 1 to nbtiles do

READ A(s, j)
READ A(k, j)
TSMQR(A(s, j), A(k, j), A(k, s))
WRITE A(k, j)
WRITE A(s, j)

end
WRITE A(k, s)

end
WRITE A(s, s)
if (s < nbtiles) then

READ A(s, s+ 1)
GELQT (A(s, s+ 1))
for j = s+ 1 to nbtiles do

READ A(j, s+ 1)
UNMLQ(A(s, s+ 1), A(j, s+ 1))
WRITE A(j, s+ 1)

end
for k = s+ 2 to nbtiles do

READ A(s, k)
TSLQT (A(s, s+ 1), A(s, k))
for j = s+ 1 to nbtiles do

READ A(j, s+ 1)
READ A(j, k)
TSMLQ(A(j, s+ 1), A(j, k), A(s, k))
WRITE A(j, k)
WRITE A(j, s+ 1)

end
WRITE A(s, k)

end
WRITE A(s, s+ 1)

end

end
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Table 3.2: Algorithm 2 — number of reads and writes for each tile

1 u+ 1 u+ 1 . . . u+ 1 u+ 1 u+ 1

1 v + 1 u+ 2 . . . u+ 2 u+ 2 u+ 2

1 v + 1 v + 2 . . . u+ 3 u+ 3 u+ 3
...

...
...

. . .
...

...
...

1 v + 1 v + 2 . . . 2v − 3 u+ v − 2 u+ v − 2

1 v + 1 v + 2 . . . 2v − 3 2v − 2 u+ v − 1

1 v + 1 v + 2 . . . 2v − 3 2v − 2 2v − 1

1 v + 1 v + 2 . . . 2v − 3 2v − 2 2v − 1

1 v + 1 v + 2 . . . 2v − 3 2v − 2 2v − 1

1 v + 1 v + 2 . . . 2v − 3 2v − 2 2v − 1

1 v + 1 v + 2 . . . 2v − 3 2v − 2 2v − 1

The total number of reads and writes for Algorithm 2 are as follows:

Number of tile reads = u+
v−1∑
i=1

(u− i)× (v + i) +
v−1∑
i=1

(v − i)× (u+ i)

= u+
v−1∑
i=1

2× (uv − i2)

= 2uv2 − 2uv − 2v3

3
+ v2 − v

3
+ u

Number of tile writes = 2uv2 − 2uv − 2v3

3
+ v2 − v

3
+ u
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For square matrix, u = v:

Number of read =
4

3
u3 − u2 +

2

3
u

Number of write =
4

3
u3 − u2 +

2

3
u

This schema, increases the number of parallel tasks but does not force the locality

such that all the tiles with “x” modify the same master tile “M”; and thus it is better

to keep it in memory instead of modifying it.

3.4.2 Proposition 2 — imposing locality data flow

Our second algorithmic design follows a data flow fashion that increases locality of the

tasks. Unlike Algorithm 2, which prioritizes parallel task flow, Algorithm 3 prioritizes

locality of the tasks so that all of them modify the same master tile. Algorithm 3

gives the details of its implementation and Figure 3.6 illustrates the fingerprint of the

dataflow pattern during one step. Like Algorithm 2, the reduction process consists

of a QR sweep followed by an LQ sweep at each step of the process. Once the QR

(the task modifying the green tile of Figure 3.6) is terminated, QR factorizations (the

TSQRT) of the red tiles are initiated. Although update by the green tile can start

for all the tiles on its right, update of the magenta tile is submitted only. When QR

factorizations are finished for red tiles update of the tiles on their right starts for the

next column only ((yellow tiles in Figure 3.6) so that all the yellow tasks marked

with ”x” modify the same master tile typed with ”M” in Figure 3.6. As every task

modifies the master tile, they cannot go in parallel but reading and writing for the

master tile is avoided for every yellow task marked with ”x”. Similarly to the QR

sweep, the LQ sweep also forces all the tasks to modify the same master tile, thus

avoiding reading and writing for the master tile.
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Algorithm 3: OOM reduction of general matrix to band form (prioritizing the
locality of task flow)

for s = 1 to nbtiles do
READ A(s, s)
GEQRT (A(s, s))
for j = s+ 1 to nbtiles do

READ A(s, j)
UNMQR(A(s, s), A(s, j))
for k = s+ 1 to nbtiles do

READ A(k, s)
if j == s+ 1 then

TSQRT (A(s, s), A(k, s))
WRITE A(k, s)

end
READ A(k, j)
TSMQR(A(s, j), A(k, j), A(k, s))
WRITE A(k, j)

end
WRITE A(s, j)

end
WRITE A(s, s)
if (s < nbtiles) then

READ A(s, s+ 1)
GELQT (A(s, s+ 1))
for j = s+ 1 to nbtiles do

READ A(j, s+ 1)
UNMLQ(A(s, s+ 1), A(j, s+ 1))
for k = s+ 2 to nbtiles do

READ A(s, k)
if j == s+ 1 then

TSLQT (A(s, s+ 1), A(s, k))
WRITE A(s, k)

end
READ A(j, k)
TSMLQ(A(j, s+ 1), A(j, k), A(s, k))
WRITE A(j, k)

end
WRITE A(j, s+ 1)

end
WRITE A(s, s+ 1)

end

end
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Figure 3.6: An OOM reduction of a general matrix to band form (prioritize the
locality of the task flow).

Table 3.3 and Table 3.4 below show the number of reads and writes for each tile

in Algorithm 3 for a u× v tile matrix. Number of tile reads and tile writes for u× v

tile matrix in Algorithm 3 are as follows:

Number of tile reads =
2v−1∑
i=1

i+
v−1∑
i=1

(u− i)× (v − 2 + i) + (u− v)× (2v − 1)

+
v−1∑
i=1

(v − 1− i)× (u− 1 + i)

= 2uv − u+ (2uv − 3u− v + 1)×
v−1∑
i=1

1

+ 2×
v−1∑
i=1

i− 2×
v−1∑
i=1

i2

= 2uv2 − 2

3
v3 − 3uv + v2 + 2u+

2

3
v − 1
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Number of tile writes =
v∑
i=1

(u+ 1− i)× (2i− 1) +
v−1∑
i=1

(v − i)× 2i

= (2u+ 2v + 3)×
v−1∑
i=1

i− (u+ 1)×
v−1∑
i=1

1

− 4×
v−1∑
i=1

i2 + (2uv + 3v − 2v2 − u− 1)

= uv2 − 1

3
v3 +

1

2
v2 − 1

6
v

Table 3.3: Algorithm 3 — number of reads for each tile

1 2 u . . . u u u

v − 1 3 4 . . . u+ 1 u+ 1 u+ 1

v − 1 v 5 . . . u+ 2 u+ 2 u+ 2
...

...
...

. . .
...

...
...

v − 1 v v + 1 . . . 2v − 5 2v − 4 u+ n− 1

v − 1 v v + 1 . . . 2v − 4 2n− 3 2v − 2

v − 1 v v + 1 . . . 2v − 4 2v − 3 2v − 1

v − 1 v v + 1 . . . 2v − 4 2v − 3 2v − 1

v − 1 v v + 1 . . . 2v − 4 2v − 3 2v − 1

v − 1 v v + 1 . . . 2v − 4 2v − 3 2v − 1

v − 1 v v + 1 . . . 2v − 4 2v − 3 2v − 1
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Table 3.4: Algorithm 3 — number of writes for each tile

1 2 2 . . . 2 2 2

1 3 4 . . . 4 4 4

1 3 5 . . . 6 6 6
...

...
...

. . .
...

...
...

1 3 5 . . . 2v − 5 2v − 4 2v − 4

1 3 5 . . . 2v − 5 2n− 3 2v − 2

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

For square matrix, u = v:

Number of tile reads =
4

3
u3 − 2u2 +

8

3
u− 1

Number of tile writes =
2

3
u3 +

1

2
u2 − 1

6
u
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Now Table 3.5 below shows the comparison of the number of tile reads and writes

between Algorithm 2 and Algorithm 3 for a u × u square tile matrix. Algorithm 3

not only reduces number of tile writes by half but also reduces number of tile reads.

That is why we are using Algorithm 3 for our further analysis.

Table 3.5: Total reads and writes of tiles for Algorithm 2 & Algorithm 3

Algorithm # of total read # of total write

Algorithm-2 4
3
u3 − u2 + 2

3
u 4

3
u3 − u2 + 2

3
u

Algorithm-3 4
3
u3 − 2u2 + 8

3
u− 1 2

3
u3 + 1

2
u2 − 1

6
u

3.5 Optimize communication overhead

From section 3.3 we know that we can a hide very small portion of the communication

cost by the computation. So, our goal is to optimize the number of reads and writes,

which in turn will reduce the communication overhead. We want to the hold tiles

in memory that are used most when the algorithm runs, thus reducing the total

number of tile reads and writes. Table 3.6 below shows the number of reads and

writes Algorithm 3 has for each tile of a u×u square tile matrix. The most-used tiles

are from the lower right corner of the matrix, as those tiles are used for both the QR

and LQ sweeps in each step of the algorithm.
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Table 3.6: Algorithm 3 — total reads and writes for each tile

(1 1) (2 2) (u 2) . . . (u 2) (u 2) (u 2)

(u− 1 1) (3 3) (4 4) . . . (u+ 1 4) (u+ 1 4) (u+ 1 4)

(u− 1 1) (u 3) (5 5) . . . (u+ 2 6) (u+ 2 6) (u+ 2 6)
...

...
...

. . .
...

...
...

(u− 1 1) (u 3) (u+ 1 5) . . . (2u− 5 2u− 5) (2u− 4 2u− 4 (2u− 3 2u− 4)

(u− 1 1) (u 3) (u+ 1 5) . . . (2u− 4 2u− 5) (2u− 3 2u− 3) (2u− 2 2u− 2)

(u− 1 1) (u 3) (u+ 1 5) . . . (2u− 4 2u− 5) (2u− 3 2u− 3) (2u− 1 2u− 1)

If one tile from the lower right corner of the matrix is held in memory, then in

each step of Algorithm 3 we can save one read and one write for both the QR and

LQ sweeps. In short, we can reduce two reads and two writes in every step as shown

in Figure 3.7. If R1c is the number of tile reads and writes reduced by holding one

tile in memory, then:

Hold 1 tile from lower right corner reduces, R1c = 2 + 2× (u− 2)

+ 2 + 2× (u− 2) read, write

= 4(u− 1) read, write

Figure 3.7: Reducing the number of tile reads and writes — holding one tile from
the lower corner of the matrix in memory.
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From section 3.4.2, we know that each step of Algorithm 3 has two sweeps — QR

and LQ. The QR sweep is always followed by the LQ sweep and dependency exists

between them. That is why we next analyzed Algorithm 3 step by step. Holding one

tile in memory, our goal is to have a reduction of more than two reads and two writes

in each step of the algorithm. So we count the number of times tiles are used in each

step of the algorithm.

Table 3.7 and Table 3.8 show the number of reads and writes for each tile in u×u

tile matrix after the QR and LQ sweeps in first step.

Table 3.7: Number of reads and writes for each tile after the first step of the QR
sweep (Algorithm 3)

(1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)

(u− 1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)

(u− 1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)
...

...
...

. . .
...

...
...

(u− 1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)

(u− 1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)

(u− 1 1) (1 1) (1 1) . . . (1 1) (1 1) (1 1)

From Table 3.7 and Table 3.8 one can observe that the tiles from the panel (the first

tile column for the QR sweep and first tile row for the LQ sweep) are communicated

more in each step of the algorithm. If one tile from the panel is held in memory, then

the (u− 2) reads can be reduced for both the QR and LQ sweeps, in total 2(u− 2)

reads in first step. Figure-3.8 shows the number of reduced tile reads in each step of

the algorithm.
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Table 3.8: Number of reads and writes for each tile after the first step of the LQ
sweep (Algorithm 3)

(1 1) (2 2) (u 2) . . . (u 2) (u 2) (u 2)

(u− 1 1) (2 2) (2 2) . . . (2 2) (2 2) (2 2)

(u− 1 1) (2 2) (2 2) . . . (2 2) (2 2) (2 2)
...

...
...

. . .
...

...
...

(u− 1 1) (2 2) (2 2) . . . (2 2) (2 2) (2 2)

(u− 1 1) (2 2) (2 2) . . . (2 2) (2 2) (2 2)

(u− 1 1) (2 2) (2 2) . . . (2 2) (2 2) (2 2)

Figure 3.8: Reducing the number of reads and writes — holding one tile from the
panel.

If R1p and Rup is the number of tile reads reduced by holding one tile and u tile

from the panel in memory respectively, then
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Holding 1 tile from panel reduces, R1p =
u−1∑
s=1

2(u− s− 1)

= (u2 − 3u+ 2) read

Holding u tile from panel reduces, Rup = Reduce for QR sweep

+Reduce for LQ sweep

=
u−1∑
s=1

(u− s− 1)(u− s)

+
u−1∑
s=1

(u− s− 1)(u− s− 1)

=
u−1∑
s=1

[2(u− s− 1)(u− s)− (u− s− 1)]

=
2

3
u3 − 5

2
u2 +

17

6
u− 1 read

Figure 3.9 compares the number of tile reads and writes that can be reduced by

holding tiles from different portions (panel or lower right corner of the matrix) of

a u × u tile matrix. Holding tiles from the panel reduces O(u3) reads and writes,

compared with O(u2) reads and writes by holding tiles from the lower right corner of

the matrix. Table 3.9 shows the number of reads and writes for each tile for a u× v

tile matrix when the panel is held in memory. So, the total number of reads and

writes when the panel is held in memory is given by the following:

Number of reads or writes = 1×
v−1∑
s=0

(u− s) + 2×
v−1∑
s=0

(u− s)(v − s− 1)

= 1×
v−1∑
s=0

(u− s) + (2v − 2)×
v−1∑
s=0

(u− s)

− 2u×
v−1∑
s=0

s+ 2×
v−1∑
s=0

s2

= uv2 − v3

3
+
v2

2
− v

6

(3.1)
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For a square matrix with u× u tile:

Number of readsorwrites =
2

3
u3 +

u2

2
− u

6
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Figure 3.9: Number of reads and writes of tiles that can be minimized.

Table 3.10 below compares the number of reads and writes for Algorithm 3 when

the panel is held in memory with both Algorithm 3 and Algorithm 2. From Table 3.10

one can observe that holding the tiles from the panel reduces the number of tiles read

by half.
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Table 3.9: Number of reads and writes for each tile — panel is held in memory for
Algorithm 3.

1 2 2 . . . 2 2 2

1 3 4 . . . 4 4 4

1 3 5 . . . 6 6 6
...

...
...

. . .
...

...
...

1 3 5 . . . 2v − 5 2v − 4 2v − 4

1 3 5 . . . 2v − 5 2v − 3 2v − 2

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1

1 3 5 . . . 2v − 5 2v − 3 2v − 1
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Table 3.10: Comparison of total number of reads and writes

Algorithm # of total read # of total write

Algorithm-2 4
3
u3 − u2 + 2

3
u 4

3
u3 − u2 + 2

3
u

Algorithm-3 4
3
u3 − 2u2 + 8

3
u− 1 2

3
u3 + 1

2
u2 − 1

6
u

Algorithm-3

(Hold panel)

2
3
u3 + 1

2
u2 − 1

6
u 2

3
u3 + 1

2
u2 − 1

6
u

If after holding a panel in memory we can hold more, then tiles from the lower right

corner of the matrix are held. Figure 3.10 shows the order of tiles to hold in memory.

If ten tiles can be held in memory, then tiles numbered 1 through 10 in Figure 3.10

are held in memory. Another important thing to note is that in Algorithm 3, panel

length decreases by one in each step. That means memory that was used to hold tiles

from the panel will not be used in the subsequent steps and can be used to hold tiles

from lower right corner of the matrix as shown in Figure 3.11.

Figure 3.10: Tile order from the lower corner of the matrix held in memory.
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In summary, our optimization techniques to reduce data movements are:

1. As first priority, hold tiles from the panel. For a u × v tile matrix, u tiles are

held in memory if u > v; otherwise v tiles are held.

2. If after holding the panel we can hold more tiles, then tiles from the lower right

corner of the matrix are held in memory.

3. One tile of memory is freed in each step of the algorithm, as the panel length

decreases by one in every LQ sweep of the algorithm. This memory tile can be

used to hold tiles from the lower right corner of the matrix in subsequent steps.

Figure 3.11: Freed memory from the panel in each step — use to hold tiles from
the lower right corner of the matrix.

3.5.1 Estimated run time for an OOM two-stage SVD solver

In this section we present a formula to estimate the runtime for first stage of a two-

stage OOM SVD solver. For a u×v tile matrix of tile size b, if only the tile form panel

(u tiles if u > v; otherwise v) can be held in memory, the total runtime is bounded

by the number of tile reads and writes. The estimated time can be easily computed

from the number of reads and writes presented in section 3.4.2 and section 3.5. But
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there might be unused memory to hold tiles from the lower right corner of the matrix

after holding the panel as shown in Figure 3.12. Let’s say T tile, yellow tiles from

the lower right corner, and panel, red tiles from the panel, are hold in memory. The

estimated runtime for the first stage of OOM SVD, Test, is given by:

Test = Tread + Twrite + Tcompute − Toverlap

Where Tread and Twrite are the total read and write times spent in communication,

Tcomputation is the computation time for yellow tiles in Figure 3.12 and Toverlap is the

computation time overlapped by the reads and writes of some of the tiles. One can see

that we are not considering computation time for white tiles in Figure 3.12. Because

reads and writes of white tiles hide the computation time. If (u− v+ l)× l is the size

of submatrix held by T tiles, then l is computed by,

l =
−(u− v) +

√
(u− v)2 + 4 ∗ T
2

If NR and S1 is the number of tile reads required for u× v and (u− v+ l)× l tile

matrix, respectively, then from equation-(3.1), NR and S1 is given by:

NR = uv2 − v3

3
+
v2

2
− v

6

S1 = (u− v + l)l2 − l3

3
+
l2

2
− l

6

= (u− v)l2 +
2l3

3
+
l2

2
− l

6

Each tile of T can save two reads in each step of Algorithm 3. From (v − l + 1)th to

the (v − 1)th step of Algorithm 3, (u− v + l)× l tile can save S1 reads. the number

of reads that can be saved in 0 to v − l step using T tiles, S2, is given by:

S2 =

2 ∗ (v − l − 1) ∗ T +min(T, (u− v + l + 1) ∗ l), if (v − l) > 0

0, otherwise
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So, (S1 + S2) is the total number of tile reads saved by T tiles and also the number

of computation for T tiles in the v step. So, now:

Figure 3.12: Panel and lower right corner tiles are held in memory
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Tread = (NR− (S1 + S2))×
8b2

BW

Twrite = (NR− (S1 + S2))×
8b2

BW

Tcompute = (S1 + S2)×
5b3

α

During computation, master tiles and tiles from the panel are sent back to disk for

write. So overlap time for v step is as follows:

Toverlap = (write in QR step+ write in LQ step)× 8b2

BW

= (
v∑
s=0

(u− s) +
v∑
s=0

(v − s)× 8b2

BW

= 2(uv + u)× 8b2

BW

Now the estimated time for the first stage of OOM SVD solver is given by the

following:

Test = Tread + Twrite + Tcompute − Toverlap

= 2(NR− (S1 + S2))×
8b2

BW
+ (S1 + S2)×

5b3

α
− 2(uv + u)× 8b2

BW
(3.2)

3.6 Experiment result

To evaluate the performance of OOM two-stage algorithms we have done a number of

experiments and collected an execution trace to show how execution time overlapped

with data movement to and from the disk. It is not easy to collect a trace for matrices

that doesn’t fit in memory, because the size of the trace is too big to visualize in trace

viewer software and is also time-consuming. To simulate OOM SVD algorithms for
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small matrices, read and write times for tiles need to be adjusted as the system puts

them in cache. We use the sleep function in the read/write kernel to match read and

write times for the disk. If BW is the bandwidth of the disk and b is tile size, the time

required to read/write a tile from/to the disk is 8b2

BW
s. We use normal distribution

to generate read and write times with mean 8b2

BW
s and variance is 40% of mean. We

collected the execution trace in a Sandy Bridge(Xeon E5-2670) machine that has HDD

of 50 MB/s bandwidth. In all of your trace, green represents GEQRT/GELQT , red

represents TSQRT/TSLQT , magenta represents GEMQR/GEMLQ, and yellow

represents the TSMQR/TSMLQ routine. Read and write tasks are represented by

cyan and purple, respectively.

(a) Two working tile. (b) Four working tile.

Figure 3.13: Memory use for the first stage of an OOM two-stage algorithm.

Our first experiment holds the panel in memory. That means tiles from the panel

will be loaded in memory at each step of the algorithm and sent back to disk for

writing when the step ends. All other tiles from the trailing matrix have to be

brought in memory once for the QR sweep and again for the LQ sweep for each

step of the algorithm. We need two other tiles (called working tile) — one holds
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the master tile (magenta) and the other holds a tile (yellow) from the same column

(row, for the LQ sweep) in memory as shown in Figure 3.13a. Figure 3.14 shows the

execution trace of the QR sweep when two tiles are used as working tiles. One can see

that execution of the TSMQR routine does not overlap with the read and write task.

Because after execution of the TSMQR routine, the yellow tile in Figure 3.13a has to

be sent back to the disk for writing before another tile from the same column is loaded

into memory to modify the master tile. To overlap execution with communication,

another two working tiles (four tiles in total) are needed as shown in Figure 3.13b.

Now execution of the TSMQR routine is overlapped with the tile read and write as

shown in Figure-3.15. Because there are four working tiles and two of them are used

to hold the master tile, one yellow tile is loaded into memory during the execution of

the TSMQR routine for another yellow tile.

Figure 3.14: Execution trace (two working tiles) — computation does not overlap
communication.

61



Figure 3.15: Execution trace (four working tiles) — computation overlaps
communication.

For both of the above experiments we use one thread to submit tasks in the

QUARK queue and another thread to handle read write tasks. The rest of the threads

execute the computation tasks. One can notice that in Figure 3.15 no TSMQR tasks

are running in parallel. As there are only four working tiles and read/write tasks are

slower than the TSMQR tasks, we can bring only one tile into memory during the

execution of a computation task.
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(a) Four working tiles. (b) Two working tiles per thread.

Figure 3.16: Memory use for the first stage of an OOM two-stage algorithm — tiles
from the panel and lower right corner are held in memory

In our next experiment, we not only held tiles from the panel but also from the

lower right corner as shown in Figure 3.16a. As before, four working tiles are used

— two master tiles and two other tiles that modify the master tiles are loaded into

the working tile. When threads are working in the non-yellow region in Figure 3.16a,

no two tasks can run in parallel as shown in the execution trace in Figure 3.17. But

as yellow tiles are in memory now, tasks for this region can be executed in parallel.

Although many yellow tiles are in memory, only two tasks are running in parallel as

shown in Figure 3.17 because of their dependency (the TSMQR tasks depend on the

master tiles) on master tile. All the TSMQR tasks of same the column depend on

the same master tile and cannot run in parallel. As there are only two master tiles

in memory, only two TSMQR tasks can run in parallel as shown in Figure 3.17. To

run the tasks of the yellow region in parallel, two working tiles per thread are needed

as shown in Figure 3.16b. When each thread has two working tiles they can run in

parallel in the yellow region as shown in the trace of Figure 3.18
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For our last experiment, we assume that the entire matrix fits in memory. So our

program will read the entire matrix in memory in the QR sweep of the first step of

the algorithm and write tiles from the panel to the disk in every step of the algorithm.

Figure 3.19 shows the execution trace for the first few steps of the algorithm. In the

QR sweep of the first step, the whole matrix is loaded into memory, so no tasks can

run in parallel. When all the tiles are in memory, the program runs like an in-memory

algorithm and tasks are executed in parallel fashion. In each step of the algorithm,

tiles from the panel for both the QR and the LQ sweeps are sent back to disk for

writing and can overlap with computation as shown in Figure 3.19.

Figure 3.17: Execution trace — four working tiles (only two tasks can run in
parallel).
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Figure 3.18: Execution trace — two working tiles per thread (All threads can run
in parallel.

Figure 3.19: Execution trace — the entire matrix fits in memory.
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3.7 Performance of an OOM SVD solver

In this section we present the performance of an OOM SVD solver when the matrix

does not fit in the main memory. We run our experiment on both Haswell i7-5930K

and Haswell E5 2650 V3 machines. The details of the machines and storage devices are

provided in Table 2.2 and Table 2.4. Since both machines have 32 GB of memory we

ran our OOM SVD solver for matrices that do not fit in 32GB memory. To estimate

the runtime of the first stage (reduction of the general matrix to band form), we

used Equation 3.2 to show its accuracy through a comparison with actual runtime.

Table 3.11 shows the size of the matrix we used in the experiment, and the value of

tile size, disk bandwidth, and the performance of the update kernel (the TSMQR)

we used to estimate the run time for two-stage SVD algorithms.

Table 3.11: Matrix size, tile size, disk bandwidth, and the update kernel performance
for runtime estimation.

Matrix Size
Tile

size

Haswell i7-5930K

Samsung SSD

Haswell i7-5930K

Seagate Constellation

Disk

bandwidth

Update kernel

performance

Disk

bandwidth

Update kernel

performance

100k x 20k 16GB 128 180 160 130 300

100k x 40k 32GB 128 180 160 130 300

100k x 60k 48GB 512 145 160 110 300

100k x 80k 64GB 512 145 160 110 300

100k x 100k 80GB 512 145 160 110 300

When the matrix is really big (i.e., 100k × 100k), small tile size creates many

tasks in each step of the algorithm presented in Algorithm 2 and Algorithm 3.

The huge number of computation and read/write tasks not only increases the

QUARK scheduler’s overhead but also decreases the overall performance of update
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kernel(the TSMQR routine). It also generates so many small read and write tasks

that it increases the disk traffic and negatively affects the bandwidth of the disk.

Even though Samsung SSD and Seagate Constellation HDD have higher sequential

read/write bandwidth, as shown in Table 2.4 we are unable to achieve that because

of complex tile access order inside the first-stage of two-stage algorithm. Big tile size

helps to have smaller number of tasks and overcome some of these short comings,

but also simultaneously increases runtime for second stage (reduction of band matrix

to bidiagonal form) of the two-stage algorithm. Table 3.12 shows the effect of tile

size for an OOM SVD solver for 100k × 60k matrix when we run it on a Haswell E5

2650V3 machine. Basically, the second stage of the SVD solver is memory bound and

performance of it depends on memory bandwidth. In Table 3.12, execution time for

both stage is shown for two tile size. Big tile size (i.e., 512) improves the performance

of the first stage compared with tile size 128 because of the higher disk bandwidth it

achieves. At the same time, big tile size takes more time for the second stage because

of the dependency on memory bandwidth for the second stage.

Table 3.12: Effect of tile size - two stage SVD algorithm

Tile

size

Disk

Bandwidth

Update kenel

performance

First stage

of two-stage

SVD algorithm

Second stage

of two-stage

SVD algorithm

Estimated

time(s)

Actual

Time(s)

128 80 300 48317 50061 243

512 110 300 14198 13257 1922

In Table 3.13 and Table 3.14, we present the execution times for the first-stage

(reduction of general matrix to band form) we estimated using Equation 3.2 described

in section 3.5.1 and also the actual time the OOM SVD algorithm is taking when it
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runs on Haswell i7-5930K and Haswell E5 2650V3 machines. Since the system has 32

GB of memory, our OOM SVD solver uses the maximum amount of memory allowed

by the system. The second column of the Table 3.13 and Table 3.14 shows the number

of tiles an OOM SVD algorithm uses to hold tiles from the lower right corner of the

matrix. We also report total number of tile reads and writes required by the first

stage of an OOM SVD algorithm. From Table 3.13 and Table 3.14 we can observe

that the estimated first-stage execution time is close to the actual run time for most

of the test cases on both Haswell i7-5930K and Haswell E5 2650V3 machines. For

example, on Haswell E5 2650V3 machine, for a 100k × 100k matrix, actual runtime

for the first stage is 19.04 hours, whereas estimated runtime using Equation 3.2 is

19.70 hours.

Table 3.13: An OOM two-stage algorithm — execution time for the first stage
(Haswell i7-5930K, Samsung SSD)

Haswell i7-5930K, Memory 32GB

Disk — Samsung SSD

Matrix

#Tile to

hold right

lower corner

# of tile

reads

# of tile

writes

Estimated

execution time

first stage(h)

Actual

execution time

first stage(h)

100k x 20k 240624 122774 122774 0.32 0.33

100k x 40k 240624 257526 257526 1.21 1.20

100k x 60k 14247 286256 286256 4.50 4.36

100k x 80k 14247 882337 882337 10.19 9.90

100k x 100k 14247 1728575 1728575 17.73 17.21
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Table 3.14: An OOM two stage algorithm — execution time for the first stage
(Haswell E5 2650V3, Seagate Constellation)

Haswell E5 2650V3, Memory 32GB

Disk — Seagate Constellation

Matrix

#Tile to

hold right

lower corner

# of tile

reads

# of tile

writes

Estimated

execution time

first stage (h)

Actual

execution time

first stage (h)

100k x 20k 240604 122774 122774 0.174 0.171

100k x 40k 240604 257666 257666 0.64 0.58

100k x 60k 14668 260753 260753 3.94 3.68

100k x 80k 14668 836539 836539 10.52 10.28

100k x 100k 14668 1664993 1664993 19.70 19.04

Table 3.15 shows the overall runtime for a two-stage OOM SVD solver for the

Haswell E5 2650V3 machine. It also compares the performance of a two-stage OOM

algorithm with one-stage as both of them reduce the general matrix to bidiagonal

form. To compute the extrapolated runtime for one-stage algorithm, we assumed

that the one-stage algorithm is getting the same disk bandwidth as the OOM SVD.

For all the matrices we tested the two-stage OOM SVD algorithm took less time

as compare with one stage on the Haswell E5 2650V3 machine. For example, for a

100k × 100k matrix the two-stage OOM SVD algorithm is taking only 20.57 hours,

whereas a one-stage algorithm will take 562 days to solve it.
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Table 3.15: Execution time for an OOM two-stage algorithm (Haswell E5 2650V3,
Seagate Constellation) and comparison with a one-stage algorithm

Haswell E5 2650V3, Memory 32GB

Disk - Seagate Constellation

Matrix
Execution time

first stage (h)

Execution time

second stage (h)

Execution time

OOM two stage

algorithm (h)

Extrapolated

OOM one stage

time (d)

100k x 40k 0.58 0.02 0.60 hours 116 days

100k x 60k 3.68 0.53 4.22 hours 242 days

100k x 80k 10.28 0.96 11.24 hours 395 days

100k x 100k 19.04 1.54 20.57 hours 562 days

From Table 3.15 one can observe that our two-stage OOM SVD can solve big

problems that could not be solved using a traditional SVD algorithm in limited time

(i.e. in one or two day). The reason is that the two-stage OOM SVD reduces disk

traffic significantly using all the strategies explained in section 3.5 and avoids Level 2

BLAS whenever possible.
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Chapter 4

OOM SVD using OOM QR

decomposition

4.1 Introduction and motivation

The QR factorization of an m×n real matrix A is the decomposition of A as A = QR,

where Q is an m×m real orthogonal matrix and R is a n× n real upper triangular

matrix. QR factorization generates a smaller n× n upper triangular matrix R when

m � n. Instead of reducing A to bidiagonal form directly for SVD, the following

two-step approach can be adopted.

• Generate QR factorization of the a general matrix A, as A = QR.

• Generate singular value decomposition of matrix R, as R = U1ΣV
T
1 .
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Both A and R matrices have the same singular values. The computational complexity

for computing SVD of A and QR + SVD of A are as follows:

Computational complexity for SV D of A(m,n) = QR for A(m,n)

+ LQ for A(m,n)

= 2n2(m− n

3
)

+ 2n2(m− n

3
)

= (4mn2 − 4

3
n3)

= 2n2(2m− 2

3
n)

Computational complexity for QR + SV D of A(m,n) = QR for A(m,n)

+ SV D for R(n, n)

= QR for A(m,n)

+QR for R(n, n)

+ LQ for R(n, n)

= 2n2(m− n

3
)

+
4

3
n3 +

4

3
n3

= 2n2(m+ n)

So, the computation complexity to reduce m × n matrix A to bidiagonal form is

(4mn2 − 4
3
n3) flop, where as the two-step approach requires 2n2(m− n

3
) flop for QR

decomposition of A, and 8
3
n3 flop to reduce matrix R to bidiagonal form, in total

2n2(m+ n) flop only. The advantages of two step approach are as follows:

• One-sided factorization i.e., QR is faster than two-sided factorization, as

transformations are applied from one side only.

• For a m × n matrix A, if m � n, the upper triangular matrix, R, may fit in

main memory and an in-memory algorithm might be used. Instead of reducing
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A to bidiagonal form directly using a two-stage OOM SVD algorithm, A might

be decomposed as A = QR using faster OOM QR. Later, SVD is computed

by an in-memory SVD solver if R fits in memory; otherwise the OOM SVD of

R must be faster than OOM SVD of A, as R must be much smaller than the

original matrix A.

4.2 QR factorization

4.2.1 Introduction

A QR factorization decomposes an m × n real matrix as A = QR, where Q is an

m ×m real orthogonal matrix and R is an n × n real upper triangular matrix. To

factorize a general matrix A as QR, a series of elementary Householder matrices of

the general form H = I − τvvT are applied, where τ is a scaling factor and v is a

column reflector. In LAPACK, QR factorization is performed as a blocked algorithm

by the DGEQRF [4] routine for double precision. The factorization algorithm is a

two-step process.

• Panel factorization — for a panel of size nb, nb columns are factored using

Householder transformations, and nb elementary Householder matrices are

accumulated. The product of the Householder matrices is represented as

H1H2 . . . Hnb = I − V TV T , where V is an m× nb matrix in which columns are

the vectors v and T is an nb× nb upper triangular matrix. Panel factorization

requires (θ(n2)) FLOPS, which is a small fraction of the total number of

FLOPS((θ(n3))) performed for a whole factorization algorithm.

• Update — in the update phase, nb transformations that are accumulated during

the panel factorization are applied all at once to the rest of the trailing sub-

matrix by Level-3 BLAS operations (DGEMM).
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The process is repeated until all columns have been factored. The panel factorization

process is rich in Level-2 BLAS operations and does not scale well on a multicore

system, as Level-2 BLAS cannot be efficiently parallelized currently on available

shared-memory machines. The execution flow of a block factorization algorithm

represents a fork-join model where panel factorization is a sequence of operations

interleaved with parallel updates of the trailing sub-matrix. The problem of fork-join

bottleneck in block algorithms has been overcome in [11], [13], [53], [43], [44] where

panel factorization and trailing submatrix updates are broken into smaller tasks of

block size b that can be represented as a DAG. In the DAG, nodes represent tasks

and edges represent the dependencies among them. Execution of the algorithm is

performed by out-of-order asynchronous execution of the tasks without violating the

dependencies, which helps to hide slow, sequential tasks behind fast, parallel ones.

Algorithm 4: Tile QR algorithm

for (k = 0; k < min(A.mt,A.nt); k = k + 1) do

Akk,kk ← GEQRT (Ak,k)

for (n = k + 1; n < A.nt; n+ +) do

Ak,n ← UNMQR(Ak,k, Ak,n)

end

for (m = k + 1; m < A.mt; m+ +) do

Am,k ← TSQRT (Ak,k, Am,k)

for (n = k + 1; n < A.nt; n+ +) do

Am,n ← TSMQR(Ak,n, Am,n, Am,k)

end

end

end
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4.2.2 Tile QR factorization

High-performance implementation of tile QR factorization is presented in [11], [13]

for multicore architecture. The algorithm processes square tile instead of rectangular

panel as in an LAPACK blocked algorithm [4]. The tile QR algorithm presented in

Algorithm 4 has the following four basic computational kernels:

• DGEQRT performs the QR factorization of a diagonal tile and generates an

upper triangular matrix R and a unit lower triangular matrix V . The lower

triangular matrix V contains the Householder reflectors.

• DTSQRT performs the QR factorization of a tile below the diagonal of the tile

matrix. The DTSQRT routine couples the R factor, produced by DGEQRT or

a previous call to DTSQRT, with a tile below the diagonal tile and generates a

square matrix V for Householder reflectors, and updates the R factor.

• DORMQR applies the orthogonal transformations computed from DGEQRT to

the right of the diagonal tile.

• DTSMQR applies the orthogonal transformations computed from DTSQRT to

the right of the tiles factorized by DTSQRT.

The kernels are executed as a task and scheduled by QUARK [56]. Figure 4.1 shows

the fingerprint of the first step of the Algorithm 4 for a 3× 3 tile matrix.
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Figure 4.1: Execution of the first step of Algorithm 4.

For an m×m matrix with tile size b and, if u = m
b

, the number row/column tile in

the matrix, Table 4.1 shows the computation cost for the kernels used in tile QR. The

most expensive kernel is the update kernel — TSMQR and consumes O(m3) flop.

For all our theoretical analysis, we consider the computation cost of the TSMQR

routine.
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Table 4.1: Computation cost for tile QR kernel

Kernel
Computation cost

(flop)

Total cost

for u× u

tile matrix

GEQRT 2b3 O(u)× 2b3 = O(m)× b2

ORMQR 3b3 O(u2)× 3b3 = O(m2)× b

TSQRT 10
3
b3 O(u2)× 10

3
b3 = O(m2)× b

TSMQR 5b3 O(u3)× 5b3 = O(m3)

4.2.3 Block and tile looking variants

The two main algorithmic variants exist for both the block and tile algorithms

explained above — (1) left looking and (2) right looking. They differ only in the

location of the update with respect to the panel. The right looking variant operates

on the current panel and applies the corresponding updates to the right as shown

in Figure 4.2a. The right-looking variant requires access to the trailing matrix for

each panel it processes and therefore reads and writes the whole trailing matrix.

Meanwhile the left-looking variant applies all updates coming from the left up to the

current panel as shown in Figure 4.2b and therefore delays subsequent updates of the

remaining parts of the matrix. That is why the left-looking invariant is called the

”lazy” variant.
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(a) Right-looking block QR decomposition (b) Left-looking block QR decomposition

Figure 4.2: Block QR decomposition — right looking vs. left looking

For tile algorithms the algorithmic principles of the right-looking and the left-

looking variants are similar to the block algorithms as shown in Figure 4.3a and

Figure 4.3b. All the computations for the panel and the updating of the matrix are

now split into tiles. Like blocked algorithms right-looking tile algorithms also need

to access the trailing matrix for each panel. Both for tile algorithms and blocked

algorithms, the update operations (left-looking or right-looking variants) may run

concurrently with the panel operations. noticeably, the right-looking and left-looking

variants actually highlight a trade-off between the degree of parallelism (right looking)

and data reuse (left looking) and can considerably affect the overall performance.
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(a) Right-looking tile QR decomposition (b) Left-looking tile QR decomposition

Figure 4.3: Tile QR decomposition — right-looking vs. left-looking.

4.3 OOM QR algorithms

OOM QR factorizes a matrix A as A = QR, where the matrix A may not fit entirely

in main memory. A left-looking variant is preferable for OOM QR algorithms because

it delays the update and avoids the writing of the trailing matrix, contrary to right-

looking algorithm, which updates the trailing matrix for every panel it processes and

causes huge data traffic on the disk. In OOM left-looking tile algorithms, only two

block tile columns may be in memory at any time. One of these is the block updated

and factored, which we refer to as the panel. The other is one of the block columns

lying to the left of the panel, which we refer to as a temporary block. So, two steps

are followed for each panel — (1) In the update step, tiles in the panel are updated

by the tiles from the temporary block; (2) In the factorization step, tiles in the panel
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are factorized after the update. All the tiles of the matrix are brought into the panel

once and then sent back to disk to be written after the factorization.

4.3.1 A theoretical study of the design of an OOM QR

The efficiency of OOM QR algorithm depends on its ability to hide the tile read time

in the temporary block. As left-looking variant delayed update and applies all at once,

we want to investigate the circumstances in which the updating of the panel may be

overlapped with the reading of the tiles in the temporary block. More specifically, we

want to know whether the updating of the green tiles (size - m×w) can be overlapped

with the reading of the red tiles in the temporary block as as shown in Figure 4.4a.

(a) Updating the panel. (b) Factorizing the panel.

Figure 4.4: Left-looking tile QR — updating and factorizing

Theorem 4.1. For the OOM tile QR algorithm, the updating of a panel of width w,

where w = k× b, can be overlapped with the reading of the tile in the temporary block

if w ≥ 1.6α

BW
, where b is the tile size, BW is the communication bandwidth, and α is

the computational performance efficiency of the system.
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Proof. Assume the panel is already loaded into memory for update. If u is the number

of row tiles, then, m = u × b and w = k × b. As the update kernel — TSMQR is

the most expensive kernels for tile QR algorithm and consumes most of the overall

flops as shown in Table 4.1 we are considering the cost of the update kernel only. The

computation cost for the update kernel is 5b3 flop.

Time to update the panel by tiles from the temporary block, tupdate, is given by:

tupdate =
(u− 1)× k × 5b3

α

=
(u× b− b)× (k × b)× 5b

α

≈ m× w × 5b

α

Time to read the tiles in the temporary block, tread is:

tread =
u× 8b2

BW × 106

=
m× 8b

BW

To overlap update with communication:

tupdate ≥ tread

=>
m× w × 5b

α
≥ m× 8b

BW

=> w ≥ 1.6α

BW

So, if the panel width, w, is at least 1.6α
BW

the updating of the panel overlaps with

the reading of a tile in the temporary block. For the Haswell E5 2650V3 machine, if

panel width is 3200, panel updating overlaps with the reading of tiles in the temporary

block. One can see that overlapping the updating of a panel with reading depends

only on panel width, not panel height. So, we do not need to hold the entire tile
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column in the temporary block. Two tiles in the temporary block are sufficient to

overlap updating with reading.

After updating the panel is factorized. Yellow tiles from the panel as shown in

Figure 4.4b are used in factorization step. While factorizing the m1 × w submatrix

of the panel as shown in Figure 4.4b, we want to investigate whether reading and

writing another submatrix of the same size is possible.

Theorem 4.2. For OOM tile QR, while factorizing a m1 ×w submatrix, where w =

k×b, a sub-matrix of the same size can be communicated (reading and writing) between

disk and memory if w ≥ 6.4α

BW
, where b is the tile size, BW is the communication

bandwidth, and α is the computational performance efficiency of the system.

Proof. According to [12], computation cost to factorize m1 × w sub-matrix is

5w2(3m1−w)
6

. So time to factorize the panel, tfactorize, is given by:

tfactorize =
5w2(3m1 − w)

6α

If m1 � w then:

tfactorize ≈
5w2m1

2α

Time for communication (read and write) of a submatrix of size m1 × w:

tread+write =
16m1w

BW

To overlap update with read write,

tfactorize ≥ tread+write

=>
5w2m1

2α
≥ 16m1w

BW

=> w ≥ 6.4α

BW
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For the Haswell E5 2650V3 machine, if the panel width is 12800, factorization of

a submatrix can overlap with the reading and writing of another submatrix of the

same size. But because two of these 12800-wide submatrices are needed, overlapping

may not always be possible.

4.3.2 Algorithm design

From theorem 4.1, we already know that panel width should be 1.6α
BW

to overlap panel

updating with the reading of a tile in the temporary block that will be used for

updating in next step. In designing the algorithm, our goal is to make panel width

large enough so that the updating of the panel overlaps the reading of the left side

tiles of the panel. In Table 4.2 we have shown how many times each tile is used

for a 10 × 8 tiled matrix with a panel width of three tiles in both the updating

and factorization steps. Tiles from the left side of the panel are read once in the

temporary block for each panel update. Tiles in and above the diagonal in the panel

are used a different number of times than tiles below the diagonal, because during

the updating step all the tiles below the diagonal also update tiles in and above the

diagonal. From Table 4.2 we can determine whether we need to hold the entire panel

in memory. If tiles in and above the diagonal are held in memory, tiles in the panel

below the diagonal can be read row-wise, updated and factorized, and sent back to

the disk before next the row is loaded into memory. For this case we need 15 tiles

to hold tiles in and above the diagonal, and another 3 tiles for each row below the

diagonal, for a total of 18 tiles compare with 30 tiles if the entire panel is loaded into

memory. Panel width can be increased by 1 with the 30 tiles that were used to hold

the entire panel.
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Table 4.2: Number of reads & writes for the OOM QR

1 0 0 10 10 10

1 1 0 9 9 9

1 1 1 8 8 8

1 1 1 7 7 7

1 1 1 1 6 6

1 1 1 1 1 5

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
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Figure 4.5: Memory bandwidth (Western Digital WDC1002FAEX) — tiles are
accessed row-wise vs. column-wise.

The potential danger is that if both tiles below the diagonal, and tiles from the

left side of the panel, have to be accessed row-wise, disk bandwidth may be impacted.

Before moving forward, we benchmarked read and write bandwidth in Figure 4.5 when

tiles are accessed row-and column-wise for Western Digital — the WDC1002FAEX

disk. Accessing tiles row-wise gives almost half of the bandwidth that we can achieve

accessing them column-wise. To hide overhead for such poor bandwidth, panel width

has to be increased, but this might not always be feasible. For peak disk bandwidth,

tiles must be accessed column-wise, as they are in consecutive location inside the disk,

and so the best way to achieve it is to hold the entire column of tiles and as many of

them as possible. If the entire column tiles does not fit in main memory, we will hold

as many tiles from the top of the column as possible and keep reading the rest when

necessary. This approach will ensure sequential access for tiles not only in the panel

but for the tiles on the left side of the panel.
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Algorithm 5: OOM QR algorithm

for (k = 0; k < A.nt; k = k + kb) do
for (n = k; n < min(k + kb, A.nt); n+ +) do

for (m = 0; m < A.mt; m+ +) do
READ Am,n

end

end
//Update A(0 : m, k : k + kb) by A(0 : m, 0 : k)
for (n = 0; n ≤ min(m, k − 1); n+ +) do

for (m = 0; m < A.mt; m+ +) do
READ Am,n
for (j = k; j < (k + kib); j + +) do

if (m == n) then
Am,j ← UNMQR(Am,n, Am,j)

else
Am,j ← TSMQR(An,j, Am,j, Am,n)

end

end

end

end
//Factorize A(m, k : k + kb)
for (kk = k; kk < A.mt; kk + +) do

Akk,kk ← GEQRT (Akk,kk)
for (n = kk + 1; n < min(k + kb, A.nt); n+ +) do

Akk,n ← UNMQR(Akk,kk, Akk,n)

end
for (m = kk + 1; m < A.mt; m+ +) do

Am,kk ← TSQRT (Akk,kk, Am,kk)
for (n = kk + 1; n < min(k + kb, A.nt); n+ +) do

Am,n ← TSMQR(Akk,n, Am,n, Am,kk)

end

end

end
for (n = k; n < min(k + kb, A.nt); n+ +) do

for (m = 0; m < A.mt; m+ +) do
WRITE Am,n

end

end

end
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Algorithm 5 gives the details of OOM QR implementation and Figure 4.6 and

Figure 4.7 illustrate the fingerprint of the dataflow pattern for both the updating

and factorization steps. Each panel of the OOM QR algorithm has the following two

phases:

• Updating — The panel is updated by all the previous delayed transformations.

Figure 4.6 shows the updating of the panel by three column tiles to the left

to the panel. Tiles in and below the diagonal are used to update the panel.

Updating by a diagonal tile (red) enables all the magenta tiles (the UNMQR

task) to be updated in parallel. When updating for the diagonal block ends,

nondiagonal tiles (red) from the same column start updating panel tiles in the

same row (yellow tiles). All the yellow tasks (the TSMQR) for the different

columns are now executed in parallel.

• Factorization — A panel is factorized after the it is updated. As all the tiles are

loaded into memory in the updating phase, the factorization of the panel is the

same as the QR factorization of the red tiles (shown in Figure 4.7) explained in

Algorithm 4 in section 4.2.2.
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Figure 4.6: Left-looking OOM QR — the updating of the panel.
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Figure 4.7: Left-looking OOM QR — the factorization of a panel.

4.3.3 Experiment and Results

To evaluate the performance of the OOM QR tile algorithm, we have conducted a

number of experiments and collected execution traces to show how execution overlaps
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with tile reading/writing from/to the disk. Like OOM SVD we have collected traces

for small matrices and adjusted tile reading/writing time using the sleep function

inside the reading/writing kernel. We collected the execution traces in Sandy Bridge

(Xeon E5-2670) machine that has an HDD of 50 MB/s bandwidth. In our traces green

represents GEQRT , red represents TSQRT , magenta represents GEMQR, and

yellow represents the TSMQR routine. Reading and writing tasks are represented

by cyan and purple, respectively, as before.

For a u × v, tile matrix with u > v, and a panel width WT tiles, there will

be dv/WT e panels. The width of the first panel is v%WT if v is not completely

divisible by WT ; otherwise, it will be WT . Making the first panel v%WT when v is

not divisible by WT has a big advantage. Because the first panel does not require

updating the reading of left side tiles in the temporary block can be avoided. All

other panels with the width v%WT pay the cost of tile reading, as updating doesn’t

overlap with reading tiles in the temporary block for panels of that size.

In our first experiment, we use fewer tiles in the panels so that updating does

not overlap with reading time. Figure 4.8 shows the execution traces with panels

20 tiles wide, and Figure 4.9 enlarges some sections of the traces of Figure 4.8. As

shown in Figure 4.9a, the first panel does not require updating, and factorization

can start when the tiles are in memory. For all other panels, the updating step

reads the left-side tiles of the panel in the temporary block and uses them to modify

tiles within the panel. Figure 4.9b and Figure 4.9c show the execution traces of the

updating. Because not enough tiles are in the panel to hide reading time for the tiles

on the left side of the panel, threads are waiting for the tasks to execute, and the

traces contain so many gaps inside, as shown in Figure 4.9b and Figure 4.9c. After

updating, factorization of the panel begins. Since all the tiles used in the factorization

step are in memory, enough tasks now exist for all the threads to execute in parallel

as shown in Figure 4.9d.
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Figure 4.8: Execution traces of OOM QR (panel width: 20 tiles).

(a) Factorization — first panel. (b) Updating of a panel.

(c) Updating — overlapping computation with

reading.

(d) Factorizing and writing back to the disk.

Figure 4.9: Execution traces of OOM QR (panel width: 20 tile) on a multicore
CPU.
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Figure 4.10: Execution traces of OOM QR (panel width: 60 tiles).

(a) First panel — factorization. (b) Updating a panel.

(c) Updating — overlapping computation with

reading.

(d) Factorizing and writing back to the disk.

Figure 4.11: Execution trace of OOM QR (panel width: 65 tile) on a multicore
CPU.
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Figure 4.12: Performance of OOM QR with a different panel width.

4.3.4 Challenges and optimization

One can see that in Figure 4.9a, and 4.9b and Figure 4.11a, and 4.11b the execution

of tasks is delayed as shown in the traces, even though tiles are in memory. We

discovered by studying the QUARK scheduler and analyzing how computation and

reading/writing tasks are submitted to the QUARK queue in Algorithm 5. Figure 4.13

shows how reading/writing tasks and computation tasks are submitted to QUARK.

Accessing consecutive data from the disk helps to reach achievable disk bandwidth.

As tiles are stored column-wise in the disk to achieve maximum bandwidth, tiles

have to be accessed column-wise. So ensure proper access, reading/writing tasks are

submitted to the QUARK scheduler column-wise fashion. On the other hand, tasks

can be run in parallel if they are placed in the scheduler according to their dependency.
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Figure 4.13: Reading/Writing and computation tasks are submitted to the QUARK
scheduler.

When reading/writing tasks are submitted in the QUARK queue column-wise to

achieve peak disk bandwidth, many reading/writing tasks are in front of computation

tasks in the QUARK queue. So, when QUARK starts scheduling tasks from it’s queue,

it processes reading tasks from the queue and computation tasks wait in the queue

for their turn. When the QUARK scheduler processes computation tasks, it resolves

the dependency issue and assigns the computation tasks to a thread for execution. As

many reading tasks are in front of computation tasks in the QUARK queue, execution

of the computation tasks is delayed.
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Figure 4.14: Left-looking OOM QR — updating.

To overcome this problem reading/writing tasks and computation tasks are

submitted to the QUARK scheduler in such a way so that QUARK can resolve

dependency issues for computation tasks and disperse them as early as possible. And

simultaneously reading/writing tasks are processed efficiently so that reading/writing

bandwidth is not affected by them. So, we start with R row of the panel. After

submitting R row of reading/writing tasks column-wise, computation tasks for R

are are submitted row-wise to the QUARK queue. Simultaneously, tiles from the

left side of the panel are read as they are required to update the panel. When

computation tasks are processed read/write tasks for the next block are inserted in

the QUARK queue as shown in Figure 4.13 and Figure 4.14. This will reduce number

of reading tasks in front of computation tasks in the queue and allows the QUARK

scheduler to process computation tasks when they are ready. We have also set the
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QUARK UNROLL TASKS environmental variable to 5000 so that QUARK can

consider a large number of tasks when resolving dependency and dispersing the tasks.

Important to note here is that the entire panel is updated before factorization.

But all the tiles in the panel are not used in the factorization step. In Figure 4.15 we

have shown which tiles are used for updating and factorization for different panels.

Only the orange-colored tiles are used for factorization. So, tiles above the orange-

colored tiles are sent back to the disk in column-wise fashion for writing during the

factorization step so that writing is overlapped with computation.

Figure 4.15: Updating and factorization for different panels in OOM QR.

In Figure 4.16 and Figure 4.17, we have shown the traces after adding the above

optimization. For the first panel, factorization starts as soon as the tiles are in memory

as shown in Figure 4.17a. After factorizing, the fist panel it is written back to disk, and

the next panel is loaded into memory, and computation starts immediately as shown

in Figure 4.17b. The updating of the the second panel is followed by factorization.

As shown in Figure 4.15 some of the tiles from the panel will not be used during
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the factorization step and can be sent back to disk for writing while factorizing the

rest of the tiles as shown in Figure 4.17c. As enough tiles are in the panel, the

updating of the panel completely overlapped with reading as shown in Figure 4.17c.

For the second panel, not enough tiles exist to write during the factorization step. In

Figure 4.17e, we see that some tiles are written back, and when the factorization step

completes, tiles that are used during the factorization step are written back. The

number of tiles used in the factorization step decreases as the panels of the matrix

are processed from left to right. For the last panel, enough tiles might exist to be sent

back to the disk and writing time might be overlapped with factorization completely

as in Figure 4.17f.

Figure 4.16: Execution traces of optimized OOM QR.
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(a) Factorizing the first panel. (b) Updating the second panel.

(c) Updating and factorizing the second panel

— overlapping computation with reading and

writing.

(d) Updating the second panel — the reading of

the left side of the panel overlaps with updating.

(e) Factorizating — the updated panel is sent

back to the disk.

(f) Updating and factorizing the last panel.

Figure 4.17: Execution traces of optimized OOM QR on a multicore CPU.

We have used 16 threads for OOM QR so far, and 14 threads are used for

computation. Next, we overloaded a Sandy Bridge machine with 18 threads so that

16 threads are used for computation. Figure 4.18 shows the performance of OOM

QR when all the optimizations are applied.
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Figure 4.18: Performance of OOM QR after optimization.

The significant time saving comes from the case when the panel width is large

enough to overlap computation with the reading of the tiles from the left side of the

panel. Other optimizations such as starting the computation and writing back the

tiles as soon as possible also helps a lot. And because enough work is ready to be

computed when panel width is big enough, using 18 threads decreases the overall

runtime.
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Table 4.3: Matrix size, disk bandwidth, and QR performance - for extrapolating
QR performance

Matrix Size

Haswell i7-5930K

Samsung SSD

Haswell E5 2650V3

Seagate Constellation

Disk

bandwidth

(MB/s)

in-memory QR

performance

(Gflop/s)

Disk

bandwidth

(MB/s)

in-memory QR

performance

(Gflop/s)

100k x 20k 16G 430 170 150 300

100k x 40k 32G 430 170 150 300

100k x 60k 48G 430 170 150 300

100k x 80k 64G 430 170 150 300

100k x 100k 80G 430 170 150 300

4.4 OOM QR Performance

In this section we present performance of OOM QR when the matrix does not fit in

main memory. We have run our experiment on both Haswell i7-5930K and Haswell

E5 2650 V3 machines. The details of the machines and storage devices are given in

Table 2.2 and Table 2.4. Since both the machines had 32 GB of memory, we ran our

OOM QR with a matrix size of more than 32 GB. We compare the performance of

OOM QR with the extrapolated performance of in-memory QR when the matrix is in

main memory. Obviously, we consider the reading/writing time of the matrix, as we

have assumed if the matrix is in disk all algorithms read the matrix at the beginning

and write back at the end of computation. Table 4.3 shows the size of the matrix for

which we did the experiment and the values of disk bandwidth and in-memory QR
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performance we used to calculate extrapolated performance for matrices that do not

fit in memory.

Table 4.4: OOM QR performance(Haswell i7-5930K, Samsung SSD)

Haswell i7-5930K, Memory 32GB

Disk - Samsung SSD

Matrix
Read

time(s)

Extrapolated

in-memory

QR time(s)

Write

time(s)

Extrapolated

in-memory

QR time(s)

(with read write)

OOM

QR(s)

100k x 40k 74 1631 74 1779 1682

100k x 60k 111 3388 111 3610 3524

100k x 80k 148 5521 148 5817 5682

100k x 100k 186 7843 186 8215 7999

Table 4.4 and Table 4.5 show the performance of our OOM QR for the Haswell

i7-5930K and Haswell E5 2650V3 machines. We have also showed in-memory QR

performance that we extrapolated using Table 4.3. Performance of OOM QR is close

to extrapolated performance of in-memory QR for most the test cases.

101



Table 4.5: An OOM QR performance (Haswell E5 2650V3, Seagate Constellation)

Haswell E5 2650V3, Memory 32GB

Disk - Seagate Constellation

Matrix
Read

time(s)

Extrapolated

in-memory

QR time(s)

Write

time(s)

Extrapolated

in-memory

QR time(s)

(with read write)

OOM

QR(s)

100k x 40k 213 924 213 1350 1271

100k x 60k 320 1920 320 2560 2437

100k x 80k 426 3128 426 3980 3859

100k x 100k 533 4444 533 5510 5285

4.5 OOM SVD using OOM QR

In this section we present performance of an OOM SVD solver for tall matrices using

OOM QR. In the first step, we factorized the original matrix by OOM QR and then

used our two-stage OOM SVD solver for SVD computation. As we mentioned earlier,

OOM QR is faster than the OOM two-stage algorithm, as QR factorization delayed

the update and does not read/write the whole trailing matrix. Table 4.6 presents the

performance of OOM SVD for tall matrices and compares it when OOM SVD solves

the problem directly without using OOM QR. For example, to solve a 200k × 100k

matrix, two-stage OOM SVD takes 86.12 hours, whereas (OOM QR + OOM SVD)

can solve it in 24.35 hours. Table 4.6 also shows the time to solve all the problems
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using one-stage algorithm. For example, to solve a 200k × 100k matrix, a one-stage

approach takes 1405 days compared with 24.35 hours if an OOM QR and a two-stage

OOM SVD solver are used to solve the same problem.

Table 4.6: An OOM two-stage algorithm using OOM QR, performance (Haswell E5
2650V3, Seagate Constellation)

Haswell E5 2650V3, Memory 32GB

Disk - Seagate Constellation

Matrix
OOM QR

time(h)

Two stage

of R(h)
QR of A

+ Two stage

of R(h)

Estimated

OOM two stage

of A(h)

Extrapolated

OOM one stage

of A(d)
First

stage(h)

Second

stage(h)

200k x 40k 0.74 0.20 0.023 0.96 hours 7.38 hours 255.88 days

200k x 60k 1.46 0.53 0.533 2.52 hours 25.11 hours 546.51 days

200k x 80k 2.59 4.96 0.962 8.51 hours 51.64 hours 935.59 days

200k x 100k 3.77 19.04 1.535 24.35 hours 86.12 hours 1405.64 days

One can see that our two-step approach for tall matrices can solve big problems

that could not be solved before using a one-stage algorithm. As many applications

require SVD for tall matrices, our OOM SVD for tall matrices can solve such big

problems in a brief time; for example, a 200k × 100k matrix in 24.35 hours.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this research project, we have studied the design of CA algorithms for OOM

SVD. When the matrix is too large and does not fit into system memory, traditional

SVD algorithms cannot solve those problems. New techniques and algorithms are

required to perform the computation while the matrix is out of memory. The growing

gap between floating point arithmetic and bandwidth for different memory systems

and disks makes designing algorithms that will avoid communication overhead more

difficult. Accessing trailing matrix at each step of the SVD algorithm makes it even

more challenging.

In Chapter 3 we analyzed communication overhead for both one-stage and two-

stage algorithms and the reduction of data movement cost that might be achieved

for OOM SVD. We have presented a theoretical analysis to hide communication

overhead, provided different strategies to avoid communication cost, and designed

and optimized a CA OOM SVD solver. We have done a number of experiments to

validate our theoretical analysis and provided the performance of an OOM SVD solver

for big matrices to prove the effectiveness of our different strategies for CA OOM SVD.

Our two-stage OOM SVD algorithm is capable of solving any big problems that do
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not fit in system memory and could not be solved before using traditional existing

algorithm.

Many applications including web search, gene expression analysis, and so forth

require SVD for tall matrices that do not fit in system memory. In Chapter 4 we

showed improved performance of OOM SVD when matrices are tall and do not

fit in main memory. To design OOM SVD for tall matrices, we have analyzed

communication cost for OOM QR and designed an efficient CA OOM tile QR

algorithm. Finally, we have improved the performance of OOM SVD using OOM QR

for tall matrices. The performance results for big matrices presented in Chapter 4

show the effectiveness of a two-step approach (OOM QR + OOM SVD) and the

significant improvement that we achieved over OOM SVD for the original problem.

5.2 Future Directions

In this dissertation we have focused on the design and implementation of an OOM

SVD solver for multicore systems. Our future work will involve the following:

• Compute singular vectors: We have computed singular values only. We

want to extend our work to compute the first few singular vectors or all the

left and and right singular vectors if possible. In this case, all the routines

that are used to compute left and right singular vectors must be rewritten, as

all the transformation matrices that are used to reduce the general matrix to

bidiagonal form will be stored in the disk.

• Improve the performance of the OOM SVD solver: For the SVD solver,

reduction of the general matrix to bidiagonal form is the most expensive part.

In two-stage algorithms, the performance of first stage (reduction of the general

matrix to band form) can be improved by accessing the tiles that are in

consecutive locations on the disk. Instead of holding tiles from the right lower

corner of the matrix, tiles from upper part of the matrix can be held in memory
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to facilitate sequential disk access. A decision program must be integrated to

decide which tile to hold and replace the old one when they are not needed in

the program for the subsequent step.

• Implement OOM SVD using GPUs and Coprocessors: We have covered

theoretical analysis for an OOM SVD solver if GPUs and coprocessors are used

for computation. In this case, we assume the matrix will be in CPU memory

and will be communicated between the CPU and the GPU/coprocessor through

PCIe. Our future work will include investigation of kernel performance and the

implementation of an SVD solver that will use GPUs and coprocessors.

• An OOM eigenvalue solver: Finally, we want to extend our work for an

OOM eigenvalue solver for a symmetric matrix when the matrix is too big to

fit in main memory.
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