69,139 research outputs found

    XL-NBT: A Cross-lingual Neural Belief Tracking Framework

    Full text link
    Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges---it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.Comment: 13 pages, 5 figures, 3 tables, accepted to EMNLP 2018 conferenc

    Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information

    Full text link
    Applying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by frame people detectors during runtime classification, without requiring any additional manually labeled ground truth apart from the offline training of the detection model. Such adaptation make use of multiple detectors mutual information, i.e., similarities and dissimilarities of detectors estimated and agreed by pair-wise correlating their outputs. Globally, the proposed adaptation discriminates between relevant instants in a video sequence, i.e., identifies the representative frames for an adaptation of the system. Locally, the proposed adaptation identifies the best configuration (i.e., detection threshold) of each detector under analysis, maximizing the mutual information to obtain the detection threshold of each detector. The proposed coarse-to-fine approach does not require training the detectors for each new scenario and uses standard people detector outputs, i.e., bounding boxes. The experimental results demonstrate that the proposed approach outperforms state-of-the-art detectors whose optimal threshold configurations are previously determined and fixed from offline training dataThis work has been partially supported by the Spanish government under the project TEC2014-53176-R (HAVideo

    Online Domain Adaptation for Multi-Object Tracking

    Full text link
    Automatically detecting, labeling, and tracking objects in videos depends first and foremost on accurate category-level object detectors. These might, however, not always be available in practice, as acquiring high-quality large scale labeled training datasets is either too costly or impractical for all possible real-world application scenarios. A scalable solution consists in re-using object detectors pre-trained on generic datasets. This work is the first to investigate the problem of on-line domain adaptation of object detectors for causal multi-object tracking (MOT). We propose to alleviate the dataset bias by adapting detectors from category to instances, and back: (i) we jointly learn all target models by adapting them from the pre-trained one, and (ii) we also adapt the pre-trained model on-line. We introduce an on-line multi-task learning algorithm to efficiently share parameters and reduce drift, while gradually improving recall. Our approach is applicable to any linear object detector, and we evaluate both cheap "mini-Fisher Vectors" and expensive "off-the-shelf" ConvNet features. We quantitatively measure the benefit of our domain adaptation strategy on the KITTI tracking benchmark and on a new dataset (PASCAL-to-KITTI) we introduce to study the domain mismatch problem in MOT.Comment: To appear at BMVC 201

    MHP-VOS: Multiple Hypotheses Propagation for Video Object Segmentation

    Full text link
    We address the problem of semi-supervised video object segmentation (VOS), where the masks of objects of interests are given in the first frame of an input video. To deal with challenging cases where objects are occluded or missing, previous work relies on greedy data association strategies that make decisions for each frame individually. In this paper, we propose a novel approach to defer the decision making for a target object in each frame, until a global view can be established with the entire video being taken into consideration. Our approach is in the same spirit as Multiple Hypotheses Tracking (MHT) methods, making several critical adaptations for the VOS problem. We employ the bounding box (bbox) hypothesis for tracking tree formation, and the multiple hypotheses are spawned by propagating the preceding bbox into the detected bbox proposals within a gated region starting from the initial object mask in the first frame. The gated region is determined by a gating scheme which takes into account a more comprehensive motion model rather than the simple Kalman filtering model in traditional MHT. To further design more customized algorithms tailored for VOS, we develop a novel mask propagation score instead of the appearance similarity score that could be brittle due to large deformations. The mask propagation score, together with the motion score, determines the affinity between the hypotheses during tree pruning. Finally, a novel mask merging strategy is employed to handle mask conflicts between objects. Extensive experiments on challenging datasets demonstrate the effectiveness of the proposed method, especially in the case of object missing.Comment: accepted to CVPR 2019 as oral presentatio
    corecore