84,472 research outputs found

    Defending Tor from Network Adversaries: A Case Study of Network Path Prediction

    Full text link
    The Tor anonymity network has been shown vulnerable to traffic analysis attacks by autonomous systems and Internet exchanges, which can observe different overlay hops belonging to the same circuit. We aim to determine whether network path prediction techniques provide an accurate picture of the threat from such adversaries, and whether they can be used to avoid this threat. We perform a measurement study by running traceroutes from Tor relays to destinations around the Internet. We use the data to evaluate the accuracy of the autonomous systems and Internet exchanges that are predicted to appear on the path using state-of-the-art path inference techniques; we also consider the impact that prediction errors have on Tor security, and whether it is possible to produce a useful overestimate that does not miss important threats. Finally, we evaluate the possibility of using these predictions to actively avoid AS and IX adversaries and the challenges this creates for the design of Tor

    Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model

    Full text link
    Recurrent major mood episodes and subsyndromal mood instability cause substantial disability in patients with bipolar disorder. Early identification of mood episodes enabling timely mood stabilisation is an important clinical goal. Recent technological advances allow the prospective reporting of mood in real time enabling more accurate, efficient data capture. The complex nature of these data streams in combination with challenge of deriving meaning from missing data mean pose a significant analytic challenge. The signature method is derived from stochastic analysis and has the ability to capture important properties of complex ordered time series data. To explore whether the onset of episodes of mania and depression can be identified using self-reported mood data.Comment: 12 pages, 3 tables, 10 figure

    Genomic selection in rubber tree breeding: A comparison of models and methods for managing G×E interactions

    Get PDF
    Several genomic prediction models combining genotype × environment (G×E) interactions have recently been developed and used for genomic selection (GS) in plant breeding programs. G×E interactions reduce selection accuracy and limit genetic gains in plant breeding. Two data sets were used to compare the prediction abilities of multienvironment G×E genomic models and two kernel methods. Specifically, a linear kernel, or GB (genomic best linear unbiased predictor [GBLUP]), and a nonlinear kernel, or Gaussian kernel (GK), were used to compare the prediction accuracies (PAs) of four genomic prediction models: 1) a single-environment, main genotypic effect model (SM); 2) a multienvironment, main genotypic effect model (MM); 3) a multienvironment, single-variance G×E deviation model (MDs); and 4) a multienvironment, environment-specific variance G×E deviation model (MDe). We evaluated the utility of genomic selection (GS) for 435 individual rubber trees at two sites and genotyped the individuals via genotyping-by-sequencing (GBS) of single-nucleotide polymorphisms (SNPs). Prediction models were used to estimate stem circumference (SC) during the first 4 years of tree development in conjunction with a broad-sense heritability (H2) of 0.60. Applying the model (SM, MM, MDs, and MDe) and kernel method (GB and GK) combinations to the rubber tree data revealed that the multienvironment models were superior to the single-environment genomic models, regardless of the kernel (GB or GK) used, suggesting that introducing interactions between markers and environmental conditions increases the proportion of variance explained by the model and, more importantly, the PA. Compared with the classic breeding method (CBM), methods in which GS is incorporated resulted in a 5-fold increase in response to selection for SC with multienvironment GS (MM, MDe, or MDs). Furthermore, GS resulted in a more balanced selection response for SC and contributed to a reduction in selection time when used in conjunction with traditional genetic breeding programs. Given the rapid advances in genotyping methods and their declining costs and given the overall costs of large-scale progeny testing and shortened breeding cycles, we expect GS to be implemented in rubber tree breeding programs

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore