6,074 research outputs found

    Integer linear programming techniques for constant dimension codes and related structures

    Get PDF
    The lattice of subspaces of a finite dimensional vector space over a finite field is combined with the so-called subspace distance or the injection distance a metric space. A subset of this metric space is called subspace code. If a subspace code contains solely elements, so-called codewords, with equal dimension, it is called constant dimension code, which is abbreviated as CDC. The minimum distance is the smallest pairwise distance of elements of a subspace code. In the case of a CDC, the minimum distance is equivalent to an upper bound on the dimension of the pairwise intersection of any two codewords. Subspace codes play a vital role in the context of random linear network coding, in which data is transmitted from a sender to multiple receivers such that participants of the communication forward random linear combinations of the data. The two main problems of subspace coding are the determination of the cardinality of largest subspace codes and the classification of subspace codes. Using integer linear programming techniques and symmetry, this thesis answers partially the questions above while focusing on CDCs. With the coset construction and the improved linkage construction, we state two general constructions, which improve on the best known lower bound of the cardinality in many cases. A well-structured CDC which is often used as building block for elaborate CDCs is the lifted maximum rank distance code, abbreviated as LMRD. We generalize known upper bounds for CDCs which contain an LMRD, the so-called LMRD bounds. This also provides a new method to extend an LMRD with additional codewords. This technique yields in sporadic cases best lower bounds on the cardinalities of largest CDCs. The improved linkage construction is used to construct an infinite series of CDCs whose cardinalities exceed the LMRD bound. Another construction which contains an LMRD together with an asymptotic analysis in this thesis restricts the ratio between best known lower bound and best known upper bound to at least 61.6% for all parameters. Furthermore, we compare known upper bounds and show new relations between them. This thesis describes also a computer-aided classification of largest binary CDCs in dimension eight, codeword dimension four, and minimum distance six. This is, for non-trivial parameters which in addition do not parametrize the special case of partial spreads, the third set of parameters of which the maximum cardinality is determined and the second set of parameters with a classification of all maximum codes. Provable, some symmetry groups cannot be automorphism groups of large CDCs. Additionally, we provide an algorithm which examines the set of all subgroups of a finite group for a given, with restrictions selectable, property. In the context of CDCs, this algorithm provides on the one hand a list of subgroups, which are eligible for automorphism groups of large codes and on the other hand codes having many symmetries which are found by this method can be enlarged in a postprocessing step. This yields a new largest code in the smallest open case, namely the situation of the binary analogue of the Fano plane

    Tables of subspace codes

    Get PDF
    One of the main problems of subspace coding asks for the maximum possible cardinality of a subspace code with minimum distance at least dd over Fqn\mathbb{F}_q^n, where the dimensions of the codewords, which are vector spaces, are contained in K⊆{0,1,…,n}K\subseteq\{0,1,\dots,n\}. In the special case of K={k}K=\{k\} one speaks of constant dimension codes. Since this (still) emerging field is very prosperous on the one hand side and there are a lot of connections to classical objects from Galois geometry it is a bit difficult to keep or to obtain an overview about the current state of knowledge. To this end we have implemented an on-line database of the (at least to us) known results at \url{subspacecodes.uni-bayreuth.de}. The aim of this recurrently updated technical report is to provide a user guide how this technical tool can be used in research projects and to describe the so far implemented theoretic and algorithmic knowledge.Comment: 44 pages, 6 tables, 7 screenshot

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    New and Updated Semidefinite Programming Bounds for Subspace Codes

    Get PDF
    We show that A2(7,4)≤388A_2(7,4) \leq 388 and, more generally, Aq(7,4)≤(q2−q+1)[7]q+q4−2q3+3q2−4q+4A_q(7,4) \leq (q^2-q+1)[7]_q + q^4 - 2q^3 + 3q^2 - 4q + 4 by semidefinite programming for q≤101q \leq 101. Furthermore, we extend results by Bachoc et al. on SDP bounds for A2(n,d)A_2(n,d), where dd is odd and nn is small, to Aq(n,d)A_q(n,d) for small qq and small nn

    Johnson type bounds for mixed dimension subspace codes

    Get PDF
    Subspace codes, i.e., sets of subspaces of Fqv\mathbb{F}_q^v, are applied in random linear network coding. Here we give improved upper bounds for their cardinalities based on the Johnson bound for constant dimension codes.Comment: 16 pages, typos correcte
    • …
    corecore