3,107 research outputs found

    Bootstrapping Homomorphic Encryption via Functional Encryption

    Get PDF
    Homomorphic encryption is a central object in modern cryptography, with far-reaching applications. Constructions supporting homomorphic evaluation of arbitrary Boolean circuits have been known for over a decade, based on standard lattice assumptions. However, these constructions are leveled, meaning that they only support circuits up to some a-priori bounded depth. These leveled constructions can be bootstrapped into fully homomorphic ones, but this requires additional circular security assumptions, which are construction-dependent, and where reductions to standard lattice assumptions are no longer known. Alternative constructions are known based on indistinguishability obfuscation, which has been recently constructed under standard assumptions. However, this alternative requires subexponential hardness of the underlying primitives. We prove a new bootstrapping theorem based on functional encryption, which is known based on standard polynomial hardness assumptions. As a result we obtain the first fully homomorphic encryption scheme that avoids both circular security assumptions and super-polynomial hardness assumptions. The construction is secure against uniform adversaries, and can be made non-uniformly secure assuming a generalization of the time-hierarchy theorem, which follows for example from non-uniform ETH. At the heart of the construction is a new proof technique based on cryptographic puzzles and decomposable obfuscation. Unlike most cryptographic reductions, our security reduction does not fully treat the adversary as a black box, but rather makes explicit use of its running time (or circuit size)

    CRYSTALS-Dilithium: A lattice-based digital signature scheme

    Get PDF
    In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design of the scheme avoids all uses of discrete Gaussian sampling and is easily implementable in constant-time. For the same security levels, our scheme has a public key that is 2.5X smaller than the previously most efficient lattice-based schemes that did not use Gaussians, while having essentially the same signature size. In addition to the new design, we significantly improve the running time of the main component of many lattice-based constructions – the number theoretic transform. Our AVX2-based implementation results in a speed-up of roughly a factor of 2 over the previously best algorithms that appear in the literature. The techniques for obtaining this speed-up also have applications to other lattice-based schemes

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms-including Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions-is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    PPP-Completeness with Connections to Cryptography

    Get PDF
    Polynomial Pigeonhole Principle (PPP) is an important subclass of TFNP with profound connections to the complexity of the fundamental cryptographic primitives: collision-resistant hash functions and one-way permutations. In contrast to most of the other subclasses of TFNP, no complete problem is known for PPP. Our work identifies the first PPP-complete problem without any circuit or Turing Machine given explicitly in the input, and thus we answer a longstanding open question from [Papadimitriou1994]. Specifically, we show that constrained-SIS (cSIS), a generalized version of the well-known Short Integer Solution problem (SIS) from lattice-based cryptography, is PPP-complete. In order to give intuition behind our reduction for constrained-SIS, we identify another PPP-complete problem with a circuit in the input but closely related to lattice problems. We call this problem BLICHFELDT and it is the computational problem associated with Blichfeldt's fundamental theorem in the theory of lattices. Building on the inherent connection of PPP with collision-resistant hash functions, we use our completeness result to construct the first natural hash function family that captures the hardness of all collision-resistant hash functions in a worst-case sense, i.e. it is natural and universal in the worst-case. The close resemblance of our hash function family with SIS, leads us to the first candidate collision-resistant hash function that is both natural and universal in an average-case sense. Finally, our results enrich our understanding of the connections between PPP, lattice problems and other concrete cryptographic assumptions, such as the discrete logarithm problem over general groups
    • …
    corecore