14,728 research outputs found

    New Iterative Method Based on Laplace Decomposition Algorithm

    Get PDF
    We introduce a new form of Laplace decomposition algorithm (LDA). By this form a new iterative method was achieved in which there is no need to calculate Adomian polynomials, which require so much computational time for higher-order approximations. We have implemented this method for the solutions of different types of nonlinear pantograph equations to support the proposed analysis

    Boundary Element Methods for the Laplace Hypersingular Integral Equation on Multiscreens: a two-level Substructuring Preconditioner

    Full text link
    We present a preconditioning method for the linear systems arising from the boundary element discretization of the Laplace hypersingular equation on a 22-dimensional triangulated surface Γ\Gamma in R3\mathbb{R}^3. We allow Γ\Gamma to belong to a large class of geometries that we call polygonal multiscreens, which can be non-manifold. After introducing a new, simple conforming Galerkin discretization, we analyze a substructuring domain-decomposition preconditioner based on ideas originally developed for the Finite Element Method. The surface Γ\Gamma is subdivided into non-overlapping regions, and the application of the preconditioner is obtained via the solution of the hypersingular equation on each patch, plus a coarse subspace correction. We prove that the condition number of the preconditioned linear system grows poly-logarithmically with H/hH/h, the ratio of the coarse mesh and fine mesh size, and our numerical results indicate that this bound is sharp. This domain-decomposition algorithm therefore guarantees significant speedups for iterative solvers, even when a large number of subdomains is used

    A Time-Dependent Dirichlet-Neumann Method for the Heat Equation

    Full text link
    We present a waveform relaxation version of the Dirichlet-Neumann method for parabolic problem. Like the Dirichlet-Neumann method for steady problems, the method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves with Neumann boundary conditions. However, each subdomain problem is now in space and time, and the interface conditions are also time-dependent. Using a Laplace transform argument, we show for the heat equation that when we consider finite time intervals, the Dirichlet-Neumann method converges, similar to the case of Schwarz waveform relaxation algorithms. The convergence rate depends on the length of the subdomains as well as the size of the time window. In this discussion, we only stick to the linear bound. We illustrate our results with numerical experiments.Comment: 9 pages, 5 figures, Lecture Notes in Computational Science and Engineering, Vol. 98, Springer-Verlag 201

    2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis

    Full text link
    This work proposes an extension of the 1-D Hilbert Huang transform for the analysis of images. The proposed method consists in (i) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure, and (ii) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2-D mode decompositions based on non-smooth convex optimization: a "Genuine 2-D" approach, that constrains the local extrema of the IMFs, and a "Pseudo 2-D" approach, which constrains separately the extrema of lines, columns, and diagonals. The spectral analysis step is based on Prony annihilation property that is applied on small square patches of the IMFs. The resulting 2-D Prony-Huang transform is validated on simulated and real data.Comment: 24 pages, 7 figure

    A multidomain spectral method for solving elliptic equations

    Get PDF
    We present a new solver for coupled nonlinear elliptic partial differential equations (PDEs). The solver is based on pseudo-spectral collocation with domain decomposition and can handle one- to three-dimensional problems. It has three distinct features. First, the combined problem of solving the PDE, satisfying the boundary conditions, and matching between different subdomains is cast into one set of equations readily accessible to standard linear and nonlinear solvers. Second, touching as well as overlapping subdomains are supported; both rectangular blocks with Chebyshev basis functions as well as spherical shells with an expansion in spherical harmonics are implemented. Third, the code is very flexible: The domain decomposition as well as the distribution of collocation points in each domain can be chosen at run time, and the solver is easily adaptable to new PDEs. The code has been used to solve the equations of the initial value problem of general relativity and should be useful in many other problems. We compare the new method to finite difference codes and find it superior in both runtime and accuracy, at least for the smooth problems considered here.Comment: 31 pages, 8 figure
    corecore