5,744 research outputs found

    Overlay networks for smart grids

    Get PDF

    Reliable Messaging to Millions of Users with MigratoryData

    Full text link
    Web-based notification services are used by a large range of businesses to selectively distribute live updates to customers, following the publish/subscribe (pub/sub) model. Typical deployments can involve millions of subscribers expecting ordering and delivery guarantees together with low latencies. Notification services must be vertically and horizontally scalable, and adopt replication to provide a reliable service. We report our experience building and operating MigratoryData, a highly-scalable notification service. We discuss the typical requirements of MigratoryData customers, and describe the architecture and design of the service, focusing on scalability and fault tolerance. Our evaluation demonstrates the ability of MigratoryData to handle millions of concurrent connections and support a reliable notification service despite server failures and network disconnections

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    corecore