2,825 research outputs found

    Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny

    Full text link
    Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.Comment: 15 page

    Evolutionary distances in the twilight zone -- a rational kernel approach

    Get PDF
    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.Comment: to appear in PLoS ON

    Inferring Species Trees from Incongruent Multi-Copy Gene Trees Using the Robinson-Foulds Distance

    Get PDF
    We present a new method for inferring species trees from multi-copy gene trees. Our method is based on a generalization of the Robinson-Foulds (RF) distance to multi-labeled trees (mul-trees), i.e., gene trees in which multiple leaves can have the same label. Unlike most previous phylogenetic methods using gene trees, this method does not assume that gene tree incongruence is caused by a single, specific biological process, such as gene duplication and loss, deep coalescence, or lateral gene transfer. We prove that it is NP-hard to compute the RF distance between two mul-trees, but it is easy to calculate the generalized RF distance between a mul-tree and a singly-labeled tree. Motivated by this observation, we formulate the RF supertree problem for mul-trees (MulRF), which takes a collection of mul-trees and constructs a species tree that minimizes the total RF distance from the input mul-trees. We present a fast heuristic algorithm for the MulRF supertree problem. Simulation experiments demonstrate that the MulRF method produces more accurate species trees than gene tree parsimony methods when incongruence is caused by gene tree error, duplications and losses, and/or lateral gene transfer. Furthermore, the MulRF heuristic runs quickly on data sets containing hundreds of trees with up to a hundred taxa.Comment: 16 pages, 11 figure

    Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment

    Get PDF
    Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in bioinformatics used to infer related residues among biological sequences. Thus alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess in those analyses. To compare the performance of different aligners and help detect systematic errors in alignments, a number of benchmarking strategies have been pursued. Here we present an overview of the main strategies--based on simulation, consistency, protein structure, and phylogeny--and discuss their different advantages and associated risks. We outline a set of desirable characteristics for effective benchmarking, and evaluate each strategy in light of them. We conclude that there is currently no universally applicable means of benchmarking MSA, and that developers and users of alignment tools should base their choice of benchmark depending on the context of application--with a keen awareness of the assumptions underlying each benchmarking strategy.Comment: Revie
    • …
    corecore