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Abstract

Background: Constructing species trees from multi-copy gene trees remains a challenging problem in
phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as
gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further
exacerbate the difficulties of species tree estimation.

Results: We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based
on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is
NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a
mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as
follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF
distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard
MulRF problem.
We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with
several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene
duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene
tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species
tree from a collection of nearly 2,000 gene trees.

Conclusions: Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to
quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is
based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes
such as deep coalescence, recombination, gene duplication and losses as well as phylogenetic error may contribute to
gene tree discord. In experiments, the MulRF method estimated species trees accurately and quickly, demonstrating
MulRF as an efficient alternative approach for phylogenetic inference from large-scale genomic data sets.

Background
With the proliferation of next generation sequencing tech-
nologies, there is great interest in using large genomic
data sets for phylogenetic inference. One challenge for
such phylogenomic analyses is that the genes sampled
from the same set of species often produce conflicting
trees [1]. Some of the incongruence among trees may be
due to errors in the phylogenetic analyses. Alternately,
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the discordance may reflect biological processes such as
recombination, gene duplication, gene loss, deep coa-
lescence, or lateral gene transfer (LGT) [1-6]. Thus, in
order to construct phylogenetic hypotheses from genomic
data, it is necessary to address the incongruence among
gene trees. Furthermore, any method for such phyloge-
netic analyses also must be computationally tractable for
extremely large genomic data sets.
Constructing species phylogenies from a collection of

gene trees requires summarizing and reconciling the phy-
logenetic information contained in the genes. The major-
ity of such species tree reconstruction methods reconcile
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the gene tree and species tree topologies using an opti-
mality criterion based on a specific evolutionary process,
such as gene duplication and loss or deep coalescence.
In this paper we consider the problem of constructing
species tree from gene trees using a tree distance mea-
sure that is not based on a specific biological process. We
evaluate how our method performs in gene tree simula-
tion experiments and with a large genomic data set from
plants.
Existing methods for inferring species trees from col-

lections of gene trees can be divided into two broad
categories: non-parametric methods based on gene tree
parsimony (GTP), and parametric methods that use like-
lihood (e.g., [7,8]) or Bayesian frameworks (e.g., [9-11]).
GTP methods take a collection of discordant gene trees
and try to find the species tree that implies the fewest
evolutionary events. GeneTree [12], DupTree [13], and
DupLoss [14] seek to minimize the number of duplica-
tions or duplications and losses. GeneTree [12], Mesquite
[1], PhyloNet [15], and the method of [14] minimize deep
coalescence events. The Subtree Prune and Regraft (SPR)
supertree method [16] is based on minimizing the num-
ber of LGT events, and thus, it also can be considered
a GTP method. Some of these methods have fast and
effective heuristics, enabling the analysis of very large
data sets. However, errors in the gene trees can mislead
GTP analyses [17-19]. Furthermore, in some cases GTP
methods may be statistically inconsistent, even when the
gene tree topologies are correct [20]. Parametric methods
exist based on either coalescence [7,10] or gene dupli-
cation and loss models [8]. Although such approaches
have a strong statistical foundation, they can be extremely
computationally expensive.
While the existing methods differ widely in their details,

with the exception of [9], they are based on assump-
tions about the specific biological cause of discordance
among gene trees. For example, GTP methods based on
a duplication and loss cost implicitly assume that the dif-
ferences between a gene tree and the species tree are
caused by either gene duplications or losses. This does
not necessarily mean that these methods will fail when
their assumptions are incorrect, but it suggests that it is
important to explore a range of different objectives for
reconciling gene trees.
We present a new approach for constructing a species

tree from discordant multi-copy gene trees based on a
generic, non-biological distance measure. Our distance
measure generalizes the Robinson-Foulds (RF) distance
measure to multi-labeled trees (mul-trees) or trees where
multiple leaves can have the same label. Our method
takes as input a collection of multi-copy gene trees
(mul-trees) and finds a species tree at minimum RF dis-
tance to the input gene trees. Our contributions are
as follows:

• We study the problem of computing the RF distance
between two mul-trees, and show that it is
NP-complete (Theorem 1).

• We formulate an RF problem for mul-trees (MulRF)
that takes a collection of multi-copy gene trees as
input and constructs a binary species tree that is at
minimum RF distance from each input gene tree
(Section The MulRF Problem). A key component of
this approach is a simple and efficient technique to
compute the RF distance between an input
multi-copy gene tree and a singly-labeled species
tree. (Note the contrast with the
previously-mentioned NP-completeness result.)

• MulRF is an NP-hard problem, so heuristics are
required to estimate solutions for large data sets. We
provide a fast �(nmk)-time algorithm for the MulRF
problem, where n is the total number of distinct leaf
labels in the input collection of gene trees, m is the
sum of n and the number of gene sequences in a
input gene tree (assuming for convenience that all the
input gene trees are built on approximately the same
number of gene sequences), and k is the number of
input gene trees (Section Solving the MulRF
problem).

• We implemented the MulRF heuristic and examined
its performance on simulated gene tree data sets that
incorporate gene tree error, gene duplication and
loss, and/or lateral gene transfer and a data set of
nearly 2000 plant gene trees (Section Experimental
evaluation).

We note that there has been much recent work on
mul-trees ranging from constructing strict and major-
ity rule consensus mul-trees to deriving diameter bounds
for various metrics on mul-trees (see, [21-26]). Further,
various problems related to RF distance have received
attention. The RF distance has been extended to increase
its robustness without sacrificing polynomial time com-
putability [27,28]. These methods appear to work well
when both input trees are singly-labeled, but there
are no direct extensions of them for mul-trees. Alter-
natively, RF distance has been used in the supertree
method for singly-labeled input trees [29,30] and the
maximum-likelihood supertree approach of [31]. Here,
we use RF distance for building species trees from
mul-trees, which allows us to incorporate a wealth of
genomic data from multi-copy genes into phylogenetic
inference.
Our heuristic algorithm for MulRF problem shares sev-

eral core concepts with unrooted RF supertree (URF)
algorithm of [30], but there are theoretical and practi-
cal differences. In particular, our local search heuristic of
MulRF is based on the SPR operation, unlike the p-Edge
Contract and Refine operation (p-ECR) used for URF [30].
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Typically, the SPR operation is more effective in explor-
ing the space of trees compared to p-ECR operation; this
also enables the MulRF heuristic to run as a standalone
application on the given gene trees, independent from
the rooted RF heuristic of [29]. In contrast, the p-ECR-
based URF algorithm of [30] uses the output of the rooted
method of [29] as a starting tree.
We performed gene tree simulation experiments to

evaluate the accuracy of our method by comparing it
against the model species tree used to simulate the data.
We compared the species trees constructed byMulRF and
GTPmethods that consider only duplication [13], duplica-
tion and loss [14], and only LGT [16] with the true species
trees. Our simulated data sets were too large to analyze
with parametric methods, so we were unable to compare
MulRF with these approaches. For example, when we ran
Phyldog [8] on a single 50-taxon, 400 gene data set using
4 cores, it did not converge on a species tree in 110 hours.
In contrast, MulRF gave an answer within a few seconds.
In all experiments, MulRF produced trees that are more

similar to the true species trees than those obtained by
the three GTP methods. This suggests that MulRF may
be more robust than GTP methods to complex processes
of gene evolution, including LGT, and in the presence of
gene tree error. Furthermore, our algorithm runs quickly
on moderate-size data sets, finishing in under two min-
utes on data sets containing 300 gene trees evolved over
100 taxon species trees. This suggests it is scalable for
large-scale phylogenomic analyses. Finally, we examined
the performance of the MulRF method on an unpub-
lished plant gene tree data set with nearly 2000 gene
trees from 22 species. The resulting species tree from
the MulRF method was largely consistent with published
plant phylogenies.

Preliminaries
Let X be a finite set of labels. A phylogenetic mul-tree on
X (or mul-tree, for short) is a pair T = (T ,ϕ) consisting
of an unrooted tree T, whose leaf set is denoted by L(T),
and where every internal vertex has degree at least three,
along with a surjective map ϕ : L(T) → X. The tree T is
called the underlying tree of T and ϕ is called the labeling
map of T . We say that T is a singly-labeled tree if ϕ is a
bijection betweenL(T) andX (i.e., |ϕ−1(x)| = 1 for all x ∈

X). Singly-labeled trees are also referred to as phylogenetic
X-trees ([32]; page 17).
A mul-tree T = (T ,ϕ) is binary if every internal vertex

of T has degree 3. A vertex of T is said to be unresolved if
its degree is greater than three. We use V (T) and E(T) to
denote the set of vertices and the set of edges of T. The set
of all internal vertices ofT is I(T) := V (T)\L(T). The size
of T , denoted by |T |, is the number of elements in L(T).
Let T = (T ,ϕ) be a mul-tree on X and U ⊆ X. Let

T[U] denotes the minimum subtree of T induced by the
elements of {v ∈ L(T) : ϕ(v) ∈ U}. The restriction of T
to U, denoted T|U is the tree obtained from T[U] by sup-
pressing all vertices of degree two. The restriction of ϕ to
U, denoted ϕ|U is the surjective mapping ϕ|U : L(T|U) →
U , where for each v ∈ L(T|U),ϕ|U(v) = ϕ(v). The restric-
tion of T to U, denoted by T|U , is the mul-tree on U given
by T|U = (T|U ,ϕ|U).
Twomul-trees T1 = (T1 = (V1,E1),ϕ1) and T2 = (T2 =

(V2,E2),ϕ2) on X are isomorphic if there exists a bijection
τ : V1 → V2, which induces a bijection between E1 and
E2, subject to the condition that ϕ1(u) = ϕ2(τ (u)) for all
u ∈ L(T1).
We define two basic operations on a mul-tree (T ,ϕ).

The contraction of an internal edge of T collapses that
edge and identifies its two endpoints, yielding a new tree
T ′ and a corresponding mul-tree (T ′,ϕ). (Note that, since
T ′ and T have the same leaf sets, ϕ is also defined on T ′.)
Let v be an unresolved vertex of T. A refinement of v is
obtained by partitioning the set of neighbors of v into two
sets N1 and N2, such that |N1|, |N2| > 1, replacing v by
two vertices v1 and v2 connected by an edge, and making
the vertices of N1 neighbors of v1 and those in N2 neigh-
bors of v2. This yields a new tree T ′, with the same leaf set
as T, and a corresponding mul-tree (T ′,ϕ). Contraction
and refinement can be viewed as inverses of each other
(Figure 1).
Let T1 = (T1,ϕ1) and T2 = (T2,ϕ2) be mul-trees on

X1 and X2, respectively, such that X1 ∩ X2 �= ∅. We
say that T1 = (T1,ϕ1) and T2 = (T2,ϕ2) have match-
ing label multiplicities if |ϕ−1

1 (x)| = |ϕ−1
2 (x)| for all x ∈

X1 ∩ X2. The Robinson-Foulds (RF) distance between two
mul-trees T1 and T2 with identical label sets and match-
ing label multiplicities, denoted by RF(T1,T2), is defined
as the minimum number of contractions and refinements

Figure 1 Contraction and refinement. Contracting edge {u,v} in the mul-tree on the left produces the mul-tree on the right. Conversely,
refinement of vertex u in the mul-tree on the right produces the mul-tree on the left.
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necessary to transform T1 into another mul-tree isomor-
phic to T2 [33,34]. (Note that [33] originally defined their
distance measure for singly-labeled trees. Later on, [34]
showed that the definition extends naturally to mul-trees.)
We extend the RF distance to mul-trees T1, on X1, and T2,
on X2, with X1 ⊆ X2 and matching label multiplicities, as
RF(T1, T2) := RF(T1, T2|X1).
Let T = (T ,ϕ) be a mul-tree on X. Let M be a multiset

on X such that the multiplicity inM of each element x ∈ X
is |ϕ−1(x)|. A split A|B of T is a bipartition of M, i.e., the
sum of multiplicities of each element x ∈ X in A and B is
equal to the multiplicity of x in M. Multisets A and B are
the parts of splitA|B. (Note that if T is singly-labeled, then
M, A, and B are sets.) The set of all splits induced by the
internal edges of a mul-tree T is denoted by �(T ).
As Figure 2 illustrates, twomul-trees T1 and T2 such that

�(T1) = �(T2) may not be isomorphic. (See also ([34],
Figure five) for a larger example.) On the other hand, by
the Splits Equivalence Theorem ([32]; p. 44), if T1 and T2
are singly-labeled trees, then �(T1) = �(T2) implies that
T1 and T2 are isomorphic. Further, in this case, [33].

RF(T1, T2) = |(�(T1)\�(T2)) ∪ (�(T2)\�(T1))| (1)

Since mul-trees do not satisfy the Splits Equivalence
Theorem, the RF distance between two of them cannot be
computed by splits using expression (1). Nevertheless, as
we show in Section The MulRF Problem, the formula will
be useful for computing the RF distance between input
gene tree and a species tree.
Ganapathy et al. [34] gave a worst-case exponential time

algorithm for computing the RF distance between two
mul-trees. The next result suggests that a polynomial time
algorithm is unlikely.

Theorem 1. Computing the RF distance between twomul-
trees is NP-complete.

Proof. See the Additional file 1.

TheMulRF Problem
A profile P = (T1, T2, . . . , Tk) is a tuple of mul-trees, also
called inputmul-trees, representingmulti-copy gene trees,
where, for each i ∈ {1, . . . , k},Ti has label set Xi. A species
tree for P is a singly-labeled phylogenetic tree S on Y,
where Y = ⋃k

i=1 Xi.

A species tree S for P and a tree T inP will not, in gen-
eral, have matching label multiplicities, since S is singly-
labeled, while T need not be. In order to define RF(T ,S),
we will extend the species tree to add the missing dupli-
cate leaf labels, thereby converting it into a mul-tree. We
explain this formally next.
Let T = (T ,ϕ) be an input mul-tree on X and S =

(S,φ) be a species tree on Y ; thus, X⊆Y . The extension
of S relative to T is a mul-tree S* = (S*,φ*) on Y, con-
structed from S by doing the following for each vertex
s ∈ L(S) such that |ϕ−1(φ(s))| > 1. Let k := |ϕ−1(φ(s))|.
Replace s by an internal vertex connecting to k leaves
{l1, . . . , lk} labeled with φ(s); i.e., ∀i(1≤i≤k),φ*(li) = φ(s).
See Figure 3. We now define RF(T ,S) to be RF(T ,S*),
where S* is the extension of S relative to T . We define the
RF distance from a profile P to a species tree S for P as
RF(P ,S) := ∑

T ∈P RF(T ,S).
Let B(P) be the set of all binary species trees for P .

Problem 1. (RF for MUL-Trees (MulRF))
Instance: A profile P = (T1, T2, . . . ,Tk) of mul-trees.
Find: A species tree S� for P such that RF(P ,S�) =
minS∈B(P) RF(P ,S).
Observe that the solution to the MulRF problem may

not be unique. Further, the MulRF problem is NP-hard
even when all the input mul-trees are singly labeled and
their leaf label sets are identical [35]. Nevertheless, the
“small” version of the problem —computing the RF dis-
tance between a profile of mul-trees and a species tree—
is easy to solve. For each input mul-tree T , we (i) con-
struct the extension S* of the species tree relative to T ;
(ii) differentiate duplicate leaf labels in both S* and T ; and
(iii) apply the split-based formula (1) to compute the RF
distance between the resulting singly-labeled phylogenetic
trees. Next, we explain this process formally.
A full differentiation of a mul-tree T = (T ,ϕ) on X is a

singly-labeled tree T = (T ,ϕ′) on X′ [34]. Note that both
T and T have identical underlying trees, but the labeling
map is surjective in the former, and bijective in the latter.
Thus, X and X′ may be different sets and |X| ≤ |X′|. Intu-
itively, a full differentiation of a mul-tree differentiates the
leaves that have identical leaf labels.
Let T = (T ,ϕ) and S = (S,φ) be two mul-trees, on X

and Y, respectively, such that T and S have matching label
multiplicities. Two full differentiations T = (T ,ϕ′) and

Figure 2 Contradicting example. Two mul-trees that induce the same set of splits but are not isomorphic. From ([23], Figure one).
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Figure 3 Rooting an unrooted tree. Phylogenetic tree T with leaf label set {a, b, c, d, e}. The rooted phylogenetic tree T with r = a is also shown.

S = (S,φ′) of T and S , respectively, are consistent if for
each a ∈ X∩Y ,ϕ′(ϕ−1(a)) = φ′(φ−1(a)), i.e, both T and S
have same set of new leaf labels for each common leaf label
in T and S . For instance, a consistent full differentiation
can be obtained by relabeling each of the k copies of each
leaf label a by a1, a2, . . . , ak in both the mul-trees.

Theorem 2 ([34]). Let T = (T ,ϕ) and S = (S,φ) be mul-
trees with matching label multiplicities. Then, RF(T ,S) =
min{RF(T, S) : T and S are mutually consistent full
differentiations of T and S , respectively}.

We can prove the following result.

Theorem 3. Let T be a mul-tree in a profile P and let S
be a species tree for P . Let S* be the extension of S relative
to T . Then, for each pair of consistent full differentiations
(T1, S1) and (T2, S2) of T and S* we have RF(T1, S1) =
RF(T2, S2).

Proof. Let T = (T ,ϕ) be the input mul-tree on X. We
prove the theorem by showing that for each a ∈ X, where
|ϕ−1(a)| = k, all k! ways of uniquely relabeling corre-
sponding k leaves in both T and S* result into the same
number of matched and unmatched splits in the corre-
sponding mutually consistent full differentiations. The set
of splits in T can be divided into two categories:

• Category 1: Splits that have all the leaves labeled with
a in one part. Such a split will always have a match,
irrespective of the labeling.

• Category 2: The remaining splits. Such splits are not
present in S*, therefore, they will never have a match,
irrespective of the labeling.

Thus, we can compute the RF distance between an input
phylogenetic mul-tree and a species tree by computing the
RF distance between any consistent full differentiations of

the two trees. Since these full differentiations are singly-
labeled trees, the RF distance between them can be found
using Equation (1).

Solving theMulRF problem
Our local search heuristic for the MulRF problem starts
with an initial (singly-labeled) species tree and explores
the space of possible species trees in search of a locally
optimum species tree, a species tree for P whose score is
minimum within its “neighborhood”. The neighborhood
is defined in terms of the Subtree Prune and Regraft (SPR)
operation [36]. An SPR operation on an unrooted, binary,
singly-labeled phylogenetic tree T = (T ,ϕ) on X cuts
any edge e ∈ E(T), thereby pruning a subtree t, and then
regrafts t by the same cut edge to a new vertex obtained
by subdividing a pre-existing edge in T − t (Figure 4). The
resulting phylogenetic tree is said to be obtained from T
by a single SPR operation. The set of all phylogenetic trees
obtained by the application of a single SPR operation on T is
called the SPR neighborhood of T , and is denoted by SPRT .

Problem 2. (SPR Search)
Instance: A profile P = (T1, T2, . . . ,Tk) of mul-trees and a
binary species tree S for P .
Find: A species tree S� for P such that S� ∈ SPRS and
RF(P ,S�) = minS ′∈SPRS RF(P ,S ′).
The SPR Search based MulRF algorithm runs in two

phases. In phase I, the algorithm quickly builds a likely
suboptimal initial species tree using a greedy leaf adding
procedure. This procedure first builds a phylogenetic tree
on three randomly selected labels, and then it adds the
remaining labels one at a time in a randomized order. In
phase II, the algorithm performs a series of SPR Search
iterations, each of which starts with an initial species tree
and the input mul-trees. The output species tree of one
SPR Search iteration serves as the initial species tree for
the next iteration. When the resulting species tree of an
SPR Search iteration is same as its initial species tree (i.e.,

Figure 4 Species tree extension. From left to right, input mul-tree T , the species tree S , and themul-tree S*. S* is the extension of S relative to T .
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Figure 5 SPR operation. A schematic representation of the SPR operation.

there is no improvement in the score), the MulRF algo-
rithm stops and returns the initial species tree of that
iteration as the output.
Let the size of the input species tree S for the SPR

Search problem be n, i.e. n := |S|. For each T ∈ P , let
m := |T | + |S|. (For convenience, we assume that all the
input gene trees have approximately the same size.) Let k
be the number of input gene trees inP . In Section Solving
the SPR search problem, we present an algorithm for the
SPR search problem that runs in time�(nmk). (More pre-
cisely, if the size of the ith gene tree in the input profile be

ti then the complexity of our algorithm is �(
k∑

i=1
n(n+ ti)).

We made the assumption about the size of the input gene
trees to simplify this complexity.) The algorithm relies
on results from [30], which characterize the RF distance
between unrooted phylogenetic trees in terms of least
common ancestors in rooted versions of those phyloge-
nies. These properties enable us to update the RF distance
quickly after an SPR operation has been applied to one of
the trees. For completeness, we briefly review these results
in the next subsection. For a full discussion with proofs,
see [30].

Robinson-Foulds distance and least common ancestors
In this subsection, we deal exclusively with singly-labeled
trees, which we refer to simply as phylogenetic trees.
A phylogenetic tree T = (T ,ϕ) is rooted if the under-

lying tree T is rooted; this means that T has exactly one
distinguished vertex rt(T), called the root. A rooted phylo-
genetic tree is binary if the root has degree two and every
other internal vertex has degree three.
LetT = (T ,ϕ) be a rooted phylogenetic tree onX. A ver-

tex v of T is internal if v ∈ V (T)\(L(T) ∪ rt(T)). The set
of all internal vertices of T is denoted by I(T). We define
�T to be the partial order on V (T) where x �T y if y is
a vertex on the path from rt(T) to x. If {x, y} ∈ E(T) and
x �T y, then y is the parent of x and x is a child of y.
The least common ancestor (LCA) of a non-empty subset
L ⊆ V (T), denoted by LCAT (L), is the unique smallest
upper bound of L under �T .
For a rooted phylogenetic tree T = (T ,ϕ) on X, let Tv

denotes the subtree of T rooted at vertex v ∈ V (T). For
each node v ∈ I(T),CT(v) is defined to be the set of leaf

labels {ϕ(u) ∈ X : u ∈ L(Tv)}. Set CT(v) is called a cluster.
LetH(T) denote the set of all clusters of T.
The RF distance between rooted phylogenetic trees T =

(T ,ϕ),S = (S,φ) on X, Y, respectively, such that X = Y , is
defined as [33]

RF(T,S) := |(H(T)\H(S)) ∪ (H(S)\H(T))|.
When X ⊂ Y , we extend the RF distance in the same

way as for unrooted trees. That is, RF(T,S) := RF(T,S|X),
where S|X := (S|X ,φ|X) is the rooted phylogenetic tree;
here, S|X is obtained from S[X] by suppressing all non-
root degree-two vertices, φ|X is the bijective mapping φ|X :
L(S|X) → X, where for each v ∈ L(S|X),φ|X(v) = φ(v).
Let T and S be two unrooted phylogenetic trees on

X and Y, respectively, such that X ⊆ Y . Let T and S

be the rooted phylogenetic trees that result from rooting
the underlying trees of T and S at the branches incident
on some arbitrarily-chosen but fixed leaf label r ∈ X
(Figure 5). (The leaf label sets of T and S are X and Y,
respectively.)

Lemma 1 ([30]). LetT and S be two unrooted phylogenetic
trees on the same leaf label set, then RF(T, S) = RF(T,S).

We now show how to compute the RF distance between
T = (T ,ϕ) on X and S = (S,φ) on Y, when X ⊆ Y ,
without explicitly building S|X . We need two concepts. Let
v ∈ I(S). The restriction of CS(v) to X is ĈT(v) := {w ∈ Y :
φ−1(w) ∈ L(Sv)andw ∈ X}.
The vertex function fS assigns each u ∈ I(T) the value

fS(u) = |U|, where U := {v ∈ I(S) : CT(u) = ĈT(v)}.
Observe that if X = Y , then for all u ∈ I(T), fS(u) ≤ 1.

Lemma 2 ([30]). RF(T,S) = |L(T)| − |I(T)| + 2|FS| − 2,
where FS := {u ∈ I(T) : fS(u) = 0}.
We now describe aO(n)-time algorithm to compute the

initial vertex function for S relative to T, along with the
RF distance between these two trees. The algorithm relies
on LCAs. For S and T, the LCA mapping MS,T : V (S) →
V (T) ∪ {ξ} is defined as

MS,T(u) :=
{
LCAT (φ−1(ĈT(u))), if ĈT(u) �= φ;

ξ , otherwise.
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See Figure 6.

Lemma 3 ([30]). For all u ∈ I(T), fS(u) = |B|, where B :=
{v ∈ I(S) : MS,T(v) = u and |CT(u)| = |ĈT(v)|}.
The LCA computation of T is linear-time in the size of

T, and the LCA mapping from S to T can be done in O(n)

time [37] in bottom-up manner. Further, from Lemmas 2
and 3 we can compute the RF distance between S and T in
O(m) time as well.

Solving the SPR search problem
Let T = (T ,ϕ) be a mul-tree (on X) in P and S = (S,φ)

be the input species tree (on Y ). We now show how to
compute the RF distance from T to each tree in the SPRS
neighborhood in time that is linear in the size of the
neighborhood. By Theorem 3, computing the RF distance
between T and each S ′ ∈ SPRS reduces to computing the
RF distance between T and each S′, where T and S′ are
the mutually consistent full differentiations of T and the
extension of S relative to T .
Suppose an SPR operation on S cuts the edge e =

{x, y} ∈ S, and that ẋ, ẏ are the subtrees of S − e con-
taining x, y, respectively. Suppose subtree ẏ is pruned and
regrafted by the same cut edge to a new vertex obtained
by subdividing an edge in ẋ. The degree-two vertex x is
suppressed and the new vertex is denoted by x. Observe
that there areO(n) possible edges in ẋ to regraft ẏ. We per-
form regrafts in an order that leads to a constant time RF
distance computation for each successive regraft.
We begin by regrafting ẏ at an edge incident to a leaf in

ẋ. Let S be the phylogenetic tree obtained from perform-
ing the prune-and-regraft. Let T (on X′) and S (on Y ′) be
the mutually consistent full differentiations of T and the
extension of S . We compute the RF distance between T
and S using the algorithm described in Section Robinson–
Foulds distance and least common ancestors. Thismethod
works by computing the RF distance between the rooted
phylogenetic trees T and S obtained by rooting T and S at
any leaf label in X′ ∩ Y ′. (Note that if X ∩ φ(L(ẋ)) = ∅

or X ∩ φ(L(ẏ)) = ∅, then T ’s distance from S is the same
as its distance from S .) The algorithm also computes the
LCAs for T and the LCA mapping from S to T.
We perform the remaining regrafts of ẏ on edges in

ẋ by iterating through the vertices of ẋ, starting from a
leaf and exploring as far as possible along each branch
before backtracking. The kth regraft is performed on the
edge between the kth and k + 1st vertices in this iteration.
Let us denote this ordering of edges by ℵ. See Figure 7.
Observe that each two distinct consecutive edges in ℵ are
adjacent. We will show that, after the initial RF distance
computation for S , we can compute in constant time the
RF distance for the result of regrafting on each successive
(adjacent) edges in ℵ.
Beginning with S , each S ′ ∈ SPRS helps in comput-

ing the RF distance of the next tree in the above regraft
order. Assume that S ′ ∈ SPRS results from regrafting ẏ at
edge {a, b} in ẋ, such that x subdivides the edge {a, b} and
neighbors to vertex y in ẏ, as shown in Figure 7. Let the
rooted phylogenetic tree obtained after extending and dif-
ferentiating S ′ be denoted by S

′. The LCA mapping and
RF distance have been computed for S′. Let S ′′ ∈ SPRS
denote the tree obtained by regrafting ẏ on edge {b, c} in ẋ
and the rooted counterpart of S ′′ is S′′.
Next, we find the vertices of S′′ whose LCA mappings

have changed as a result of the SPR operation. Let T, S′
and S′′ be the underlying trees ofT,S′ and S′′, respectively.
Based on the topology of S′, there are three cases:

1. x is parent of b and b is parent of c. For all
t ∈ I(S′′)\{x, b},MS′′ ,T(t) =MS′,T(t). Further,
MS′′,T(b) := MS′,T(x), and
MS′′,T(x) := LCA(MS′,T(c),MS′,T(y)).

2. b is parent of c and x. For all t ∈ I(S′′)\{x},MS′′,T(t)
=MS′,T(t). Further,
MS′′,T(x) := LCA(MS′,T(c),MS′,T(y)).

3. b is parent of x and c is parent of b. For all
t ∈ I(S′′)\{b, x},MS′′ ,T(t) =MS′,T(t). Moreover,
MS′′,T(x) := MS′,T(b), and
MS′′,T(b) := LCA(MS′,T(d),MS′,T(a)).

Figure 6 LCAmapping. The LCA mapping from S to T. Vertex φ−1(a) in the underlying tree of S is mapped to ξ as a /∈ X . The internal vertices of
the underlying tree of T are labeled with the values of the vertex function.
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Figure 7 Iterating a tree. A phylogenetic tree with a subtree
regrafted at an edge {a, b} of the underlying tree. One iteration of
vertices in this tree ism1, a,m2, a, b, c,m3, c,m4, c, b, d,m5, d,m6, d,
b, a,m1. The resulting ordering ℵ is {m1, a}, {a,m2}, . . . , {a,m1}.

Since we can check in constant time which one of
the above three cases holds, the LCA mappings can be
updated in constant time too. Let H be a set {u ∈ I(T) :
fS′′(u) �= fS′(u)}. Observe that H has at most four vertices,
and thus it be computed in constant time. Let G denote
the set {w ∈ H : fS′(w) = 0, but fS′′(w) ≥ 1}, and L denote
the set {w ∈ H : fS′(w) ≥ 1, but fS′′(w) = 0}.
Lemma 4. RF(S′′,T) = RF(S′,T) − 2|G| + 2|L|.

Proof.

RF(S′′,T) = |L(T)| − |I(T)| − 2 + 2|FS′′ |
= |L(T)| − |I(T)| − 2

+ 2|{u ∈ I(T) : fS′′(u) = 0}|
= |L(T)| − |I(T)| − 2 + 2|FS′ |

− 2|{u ∈ H : fS′(u) = 0 & fS′′(u) ≥ 1}|
+ 2|{u ∈ H : fS′′(u) = 0 & fS′(u) ≥ 1}|

= RF(S′,T) − 2|G| + 2|L|

Thus, after the initial regraft of ẏ at a leaf in ẋ, we can
compute in constant time the RF-distance between T and
the species tree that results from each subsequent regraft.
Next, we present the results on complexity of our algo-

rithm. Recall that n is the size of the species tree and m is
the sum of n and the size of an input gene tree, where all
the input gene trees are considered to have approximately
the same size.

Lemma 5. Let {x, y} be an edge of S and let ẋ and ẏ be the
subtrees of S containing x and y, respectively, that result
from deleting {x, y}. The RF distance for the set of trees
obtained by regrafting ẋ (resp. ẏ) on each edge in ẏ (resp. ẋ)
can be computed in �(m) time.

Proof. The RF distance computation for S , obtained by
pruning ẏ and regrafting at a leaf in ẋ, can be done in�(m)

time. After S , the RF distance for each phylogenetic tree
S ′ obtained by regrafting ẏ on each edge in ẋ, can be com-
puted in constant time by performing regrafts in the order
of ℵ. There are �(n) edges in ℵ, thus the RF computation
for all the phylogenetic trees can be done in �(m) time.
The same argument applies for pruning ẋ and regrafting
on the edges in ẏ.

Theorem 4. The SPR Search problem can be solved in
�(nmk) time.

Proof. The underlying tree S of S has �(n) internal
edges. For each edge {x, y} in S, let ẋ and ẏ be the subtrees
of S defined in the statement of Lemma 5. The RF distance
for all the phylogenetic trees obtained by regrafting ẋ (or
ẏ) on each edge in ẏ (or ẋ) can be computed in �(m) time
from Lemma 5. Thus the RF distance for k input mul-trees
can be checked in �(mk) time. The total execution time
for �(n) internal edges must be �(nmk).

Experimental evaluation
In order to evaluate the performance of the MulRF
method, we implemented the heuristic algorithm of
Section Solving the MulRF problem using C/C++. The
MulRF software as well as simulated data sets (explained
next) are freely available for download at http://genome.
cs.iastate.edu/CBL/MulRF/.

Simulated data set
Methods. We used simulation experiments to evaluate
the performance of MulRF and compare it to GTP meth-
ods. Since the MulRF method is designed for use with
multi-copy gene trees, we focus on simulating genes that
could have a history of duplication and/or lateral transfer.
We first generated model species trees using the uniform
speciation (Yule) module in the program Mesquite [38].
Two sets of model trees were generated: i) 50-taxon trees
of height 220 thousand years (tyrs), ii) 100-taxon trees of
height 440 tyrs. Note that the dates are relative; they do
not have to represent thousands of years.
Next, we evolved 150 and 300 gene trees for each 50-

and 100-taxon model species tree, respectively. For each
gene tree a single gene birth node is chosen from the
species tree nodes. Among all the simulated gene trees for
a species tree, four gene trees have the gene birth node
that is same as the root of the model tree. This represents

http://genome.cs.iastate.edu/CBL/MulRF/
http://genome.cs.iastate.edu/CBL/MulRF/
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the sampling that would result from an experiment look-
ing at genes from a few distantly related species. The rest
had a gene birth node, which is selected at random using
the model species tree topology and branch lengths. Start-
ing from the children of the root, a Poisson process is
tested along the parent edge of each node. If the birth
occurs, the corresponding node becomes the birth node
for that gene tree. This represents the sampling that would
result from a study of closely related species.
We simulated the evolution of the gene trees within the

model species tree using our C++ implementation of the
duplication-loss model of [39]. We applied LGT events on
the evolved gene trees, using the standard subtree transfer
model of LGT. One LGT event causes the subtree rooted
at a vertex c to be pruned and regrafted at an edge (a, b),
where a and b together are not in the path from the root
(of the tree) to c. We used gene duplication and loss (D/L)
rate of 0.002 events/gene per tyrs and LGT rate of 0 to 2
events per gene tree. Note that the gene tree simulations
without LGT follow a molecular clock model (equal rates
of molecular evolution along all branches of the gene tree),
but the simulations with LGT violate the molecular clock.
We generated gene trees based on four evolutionary sce-

narios: i) no duplications, losses, or LGT (called none), ii)
D/L rate 0.002 and no LGT (called dl), iii) no duplication
or loss, and LGT rate 2 (called lgt), and iv) D/L rate 0.002
and LGT rate 2 (called both). The parameter values (evolu-
tionary scenario and model tree size) for each simulation
are called the model condition; 20 model species trees
were generated for each model condition. We deleted 0 to
25% of leaves (selected at random) from each gene tree to
represent missing data or unsampled, which is common
in almost all phylogenomic studies. For each gene tree,
we used Seq-Gen [40] to simulate a DNA sequence align-
ment of length 500 based on the GTR+Gamma+I model.
The parameters of the model were chosen with equal
probability from the parameter sets estimated in [41] on
three biological data sets, following [42]. We estimated
maximum likelihood trees from each simulated sequence
alignment using RAxML [43], performing searches from 5

different starting trees and saving the best tree. Since the
true root of a gene tree with possible duplication and loss
often is unknown, we rooted each estimated gene tree at
the midpoint of the longest leaf-to-leaf path using Retree
[44] before the species tree construction.

Species tree estimation. We estimated species trees with
GTP minimizing only the number of duplications (Only-
dup) [13], GTP minimizing duplications and losses (Dup-
loss) [14], GTP minimizing LGT events (SPR supertree
or SPRS for short) [16], and the MulRF heuristic. Both
Only-dup and Dup-loss were executed with their default
settings, including a fast leaf-adding heuristic for initial
species tree construction. SPRS was run with 25 iterations
of the global rearrangement search option. For 50-taxon
data sets, it calculated the exact rSPR distance if it was
15 or less, and otherwise it estimated the rSPR distance
using the 3-approximation. For the 100-taxon data sets,
we used the 3-approximation of the rSPR distance. SPRS
does not allow mul-trees as input. Therefore we only ran
it on none and lgt data sets. Experiments were performed
on the University of Florida High Performance Computing
(HPC) cluster.We performed the experiments on theHPC
cluster in order to simultaneously run the many sim-
ulations and phylogenetic analyses. However, all of the
analyses (including SPRS, GTP, andMulRF) are sequential
and easily run on a desktop machine. The running times
are given in Table 1. The HPC cluster has cores of 2.3, 2.6,
2.9, or 2.66GHz on Opteron or Intel processors with 2 to
4GB RAM.

Results. We report the average topological error (ATE)
for each model condition. This is the average of the nor-
malized RF distance (dividing the RF distance by number
of internal edges in both trees) between each of the 20
model species trees and their estimated species trees. An
ATE of 0 indicates that two trees are identical, and an ATE
of 100 indicates that two trees share no common splits.
For each set of 50- and 100-taxon model trees, the

MulRF species trees are more accurate (lower ATE rate)

Table 1 Execution time

Num. Taxa Sets Only-dup Dup-loss SPRS MulRF

50

none < 1s 2 s 8 h 34 m 32 s 3 s

lgt < 1s 2 s 8 h 30 m 30 s 2 s

dl < 1s 3 s NA 6 s

both < 1s 3 s NA 6 s

100

none 9 s 37 s 21 h 34 m 25 s 58 s

lgt 11 s 49 s 19 h 6 m 9 s 51s

dl 9 s 30 s NA 1 m 11 s

both 11 s 37 s NA 1 m 15 s

Running time for species tree estimations.
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than those produced by the other threemethods. The ATE
rate of MulRF is 16.75% to 39.91% lower than the method
of lowest ATE rate among other three methods (Figure 8).
In order to examine how Only-dup, Dup-loss, and SPRS

methods performwhen gene tree simulations only include
events that these methods assume to be the source of dis-
cordance, we studied the performance of Only-dup and
Dup-loss on evolutionary scenario dl and SPRS on lgt. In
both evolutionary scenarios we found that the ATE rate
of MulRF was lowest for both 50- and 100-taxon data sets
(Figure 8). Surprisingly for lgt, while the ATE rate of SPRS
was lower than Only-dup and Dup-loss in 50-taxon, the
ATE rate of the former was much higher than that of the
latter two in 100-taxon data sets (Figure 8).
We also examined the accuracy of species tree esti-

mates by Only-dup, Dup-loss, and SPRS when gene tree
simulations include events that these methods do not
assume to be the source of discordance (e.g., dl and
both for SPRS, lgt and both for Only-dup and Dup-
loss). While SPRS could not be tested on dl and both
because they included mul-trees, Only-dup and Dup-loss
had high ATE rate for lgt and both (Figure 8). In general,
Only-dup’s estimate had much higher ATE rate com-
pared to Dup-loss in the presence of LGT events; the
ATE rate of MulRF was lowest among all the methods
(Figure 8).

Biological data set
We also tested the performance of the MulRF method on
a gene tree data set from 22 plant species. These species
were chosen because they are phylogenetically diverse,
and they all have fully sequenced and annotated genome
sequences. This makes it possible to obtain a large num-
ber of gene trees with potentially no missing sequences.
Furthermore, there is much support for the relationships
among most of these species (e.g., [45]), and therefore, it
provides an empirical system on which we can evaluate
the performance of MulRF. We obtained nucleotide align-
ments from gene families that had been generated from
genome sequences with OrthMCL [46] and aligned with
MAFFT [47]. We selected the gene family alignments that

contained sequences from at least 20 of the 22 species and
had a maximum of 50 gene sequences. This was a total of
1910 gene alignments. We estimated maximum likelihood
trees for all of the genes using GTRCATmodel in RAxML
[43]. The unrooted gene trees were used as input for the
MulRF heuristic. The Only-dup and Dup-loss methods
require rooted input trees. Thus, we rooted all of the gene
trees on the longest branch using Newick utilities [48].
This is similar to mid-point rooting, and in our experi-
ence it often provides a good starting point for input gene
trees in GTP analyses. The rooted gene trees were used
as input for GTP analysis using Only-dup [13] and Dup-
loss [14]. Only-dup and Dup-loss were executed with the
default SPR search, including a fast leaf-adding heuristic
for initial species tree construction, and searching for an
optimal root by re-rooting the gene trees after each SPR
search (e.g., [13]; [17]). We could not run SPRS on this
data set because it contains mul-trees.
The MulRF heuristic completed in 4 minutes and 4 sec-

onds on a Mac laptop with a 2.26 GHz Intel processor and
4GB RAM. The resulting species tree is largely consistent
with the most recent phylogenetic analyses (Figure 9; e.g.,
[45]). Amborella is sister to the other angiosperms and
monocots and eudicots form clades. Within the eudicots
there is a core-eudicot clade, and within the core-eudicots
the rosid clade is sister to the asterid clade. The malvids
are sister to the fabids within the rosids. Interestingly,
Populus groups with the malvids, consistent with recent
analyses of nuclear and mitochondrial, but not chloro-
plast, data (e.g., [49]; [17]). There are two minor differ-
ences from the generally accepted reltionships: Phoenix
should be sister to Musa + Poaceae rather than sister to
Musa, and Aquilegia should be sister to the other eudicots
rather than Nelumbo. The ATE for the MulRF tree is 0.11.
Thus, it appears that MulRF can quickly estimate a nearly
accurate species trees from large-scale plant genomic data
sets. The Only-dup tree heuristic completed in 7 seconds,
and if we unroot the result, it is identical to the MulRF
tree. The Dup-loss tree, which completed in 7 seconds,
had a less accepted topology, placing Amborella sister to
the monocots instead of sister to other angiosperms and

Figure 8 Experimental result of simulated data. Average topological error (means with standard error bars) for species tree constructed by
Only-dup, Dup-loss, SPRS, and MulRF method, for all four model conditions.
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Figure 9 Experimental result of biological data. The MulRF species tree of plant gene tree data set.

Vitis sister to the asterids rather than with the rosids. The
ATE for the Dup-loss tree is 0.21.

Conclusion
We presented the new MulRF method for inferring
species tree from incongruent gene trees that is based on
a generalized form of the RF distance. Unlike most previ-
ous phylogenetic methods using gene trees, our approach
is based on a generic tree distance measure that is not
linked to any specific biological processes. As a result, it is
intuitively appealing for analyses of genomic data sets, in
which many processes such as deep coalescence, recom-
bination, gene duplications and losses, and LGT, as well as
phylogenetic error likely contribute to gene tree discord.
In simulation experiments, the MulRF method estimated
species trees more accurately than several GTP methods,
and it appears to be relatively robust to the effects of phy-
logenetic error, gene duplication and loss, and LGT. In
addition, the MulRF method is fast, estimating 100-taxon
species trees from hundreds of gene trees in under two
minutes and a plant data set with 22 taxa and nearly 2000
gene trees in just over 4 minutes.
Our simulation experiments greatly simplify the true

processes of genomic evolution. We focused only on pro-
cesses that reflect the objectives of the GTP methods, and
we emphasized on duplication and loss, because that espe-
cially relevant to the evolution of multi-copy gene trees.
Still, even in these conditions in which we might expect
GTP to perform well, we find that MulRF obtains more
accurate results than GTP in most instances. This does
not mean that MulRF will always outperform GTP, but
we suggest that MulRF can quickly provide an interesting

alternate perspective on species tree inference. More tests
are needed to characterize the performance of MulRF
methods under different evolutionary scenarios.
Another future direction will be to incorporate esti-

mates of gene tree uncertainty into the supertree analysis
by weighing the splits differently when computing the RF
distance. Also, the effectiveness of the MulRF method in
inferring species trees from multi-copy gene trees sug-
gests that other tree distance measures can be used in the
same context. A natural candidate for study is the quar-
tet distance. Future work should also evaluate the suit-
ability of different distance metrics in estimating species
trees under different error models and evolutionary
scenarios.
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