41,885 research outputs found

    No entailing laws, but enablement in the evolution of the biosphere

    Get PDF
    Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phenotypes, niches, ecosystems. We wish to argue that the evolution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon discussing the variability of the very "contexts of life": the interactions between organisms, biological niches and ecosystems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of time the "niches" which constitute the boundary conditions on selection. More generally, by the mathematical unprestatability of the "phase space" (space of possibilities), no laws of motion can be formulated for evolution. We call this radical emergence, from life to life. The purpose of this paper is the integration of variation and diversity in a sound conceptual frame and situate unpredictability at a novel theoretical level, that of the very phase space. Our argument will be carried on in close comparisons with physics and the mathematical constructions of phase spaces in that discipline. The role of (theoretical) symmetries as invariant preserving transformations will allow us to understand the nature of physical phase spaces and to stress the differences required for a sound biological theoretizing. In this frame, we discuss the novel notion of "enablement". This will restrict causal analyses to differential cases (a difference that causes a difference). Mutations or other causal differences will allow us to stress that "non conservation principles" are at the core of evolution, in contrast to physical dynamics, largely based on conservation principles as symmetries. Critical transitions, the main locus of symmetry changes in physics, will be discussed, and lead to "extended criticality" as a conceptual frame for a better understanding of the living state of matter

    Optimal phenotypic plasticity in a stochastic environment minimizes the cost/benefit ratio

    Get PDF
    This paper addresses the question of optimal phenotypic plasticity as a response to environmental fluctuations while optimizing the cost/benefit ratio, where the cost is energetic expense of plasticity, and benefit is fitness. The dispersion matrix \Sigma of the genes' response (H = ln|\Sigma|) is used: (i) in a numerical model as a metric of the phenotypic variance reduction in the course of fitness optimization, then (ii) in an analytical model, in order to optimize parameters under the constraint of limited energy availability. Results lead to speculate that such optimized organisms should maximize their exergy and thus the direct/indirect work they exert on the habitat. It is shown that the optimal cost/benefit ratio belongs to an interval in which differences between individuals should not substantially modify their fitness. Consequently, even in the case of an ideal population, close to the optimal plasticity, a certain level of genetic diversity should be long conserved, and a part, still to be determined, of intra-populations genetic diversity probably stem from environment fluctuations. Species confronted to monotonous factors should be less plastic than vicariant species experiencing heterogeneous environments. Analogies with the MaxEnt algorithm of E.T. Jaynes (1957) are discussed, leading to the conjecture that this method may be applied even in case of multivariate but non multinormal distributions of the responses

    Oncogenesis- kaleidoscopic and multi-level reality

    Get PDF
    Oncogenesis is an extremely complex phenomenon. The mechanisms by which cancer is induced is only partially known. Consequently, therapeutic targets may be uncertain and results are often unsatisfactory. The purpose of this paper is to develop a trans-level and multiple transdisciplinary perspective describing the kaleidoscopic reality of oncogenesis. This manner of understanding oncogenesis as a complex process characterized by a non-linear dynamic, far from equilibrium and with unpredictable evolution, transcends the classical perspective and requires a paradigm shift. This approach is also facilitated by recent studies that focus on group phenomena, with emerging behaviors in a continuous phase transition. Biological systems, and obviously the human organism, express this type of behavior with critical self-organizing valences in the context of a genome - mesotope (environment) - phenotype interaction. For example, nature has transposed in the ecosystem, among other things, the performance pattern of its mineral history represented by the dynamic energy-matter-information unit (the principle of invariance). And multi-cell biological systems in the phylogenetic tree crown have multiple directed aerobic metabolisms in accordance with specific functions. Cancers, in turn, have a hybrid (anaerobic and aerobic) and unidirectional metabolism whose only and ultimate reason is the survival of the malignant cell. Understanding the transdisciplinary reality of oncogenesis offers novel development paths for new therapeutic strategies compared to current ones which have relatively limited efficiency

    Numerical Complete Solution for Random Genetic Drift by Energetic Variational Approach

    Full text link
    In this paper, we focus on numerical solutions for random genetic drift problem, which is governed by a degenerated convection-dominated parabolic equation. Due to the fixation phenomenon of genes, Dirac delta singularities will develop at boundary points as time evolves. Based on an energetic variational approach (EnVarA), a balance between the maximal dissipation principle (MDP) and least action principle (LAP), we obtain the trajectory equation. In turn, a numerical scheme is proposed using a convex splitting technique, with the unique solvability (on a convex set) and the energy decay property (in time) justified at a theoretical level. Numerical examples are presented for cases of pure drift and drift with semi-selection. The remarkable advantage of this method is its ability to catch the Dirac delta singularity close to machine precision over any equidistant grid.Comment: 22 pages, 11 figures, 2 table

    BV solutions constructed by epsilon-neighborhood method

    Get PDF
    We study a certain class of weak solutions to rate-independent systems, which is constructed by using the local minimality in a small neighborhood of order ε\varepsilon and then taking the limit ε→0\varepsilon \to 0. We show that the resulting solution satisfies both the weak local stability and the new energy-dissipation balance, similarly to the BV solutions constructed by vanishing viscosity introduced recently by Mielke, Rossi and Savar\'e

    Resolvent Positive Linear Operators Exhibit the Reduction Phenomenon

    Full text link
    The spectral bound, s(a A + b V), of a combination of a resolvent positive linear operator A and an operator of multiplication V, was shown by Kato to be convex in b \in R. This is shown here, through an elementary lemma, to imply that s(a A + b V) is also convex in a > 0, and notably, \partial s(a A + b V) / \partial a <= s(A) when it exists. Diffusions typically have s(A) <= 0, so that for diffusions with spatially heterogeneous growth or decay rates, greater mixing reduces growth. Models of the evolution of dispersal in particular have found this result when A is a Laplacian or second-order elliptic operator, or a nonlocal diffusion operator, implying selection for reduced dispersal. These cases are shown here to be part of a single, broadly general, `reduction' phenomenon.Comment: 7 pages, 53 citations. v.3: added citations, corrections in introductory definitions. v.2: Revised abstract, more text, and details in new proof of Lindqvist's inequalit

    Amino acid metabolism conflicts with protein diversity

    Get PDF
    The twenty protein coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, sequence diversity is necessary for protein folding, function and evolution. Here we present a simple model for a cost-diversity trade-off postulating that natural proteomes minimize amino acid metabolic flux while maximizing sequence entropy. The model explains the relative abundances of amino acids across a diverse set of proteomes. We found that the data is remarkably well explained when the cost function accounts for amino acid chemical decay. More than one hundred proteomes reach comparable solutions to the trade-off by different combinations of cost and diversity. Quantifying the interplay between proteome size and entropy shows that proteomes can get optimally large and diverse
    • …
    corecore