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Abstract. We study a certain class of weak solutions to rate-independent systems, which is constructed
by using the local minimality in a small neighborhood of order ε and then taking the limit ε → 0. We
show that the resulting solution satisfies both the weak local stability and the new energy-dissipation
balance, similarly to the BV solutions constructed by vanishing viscosity introduced recently by Mielke
et al. [A. Mielke, R. Rossi and G. Savaré, Discrete Contin. Dyn. Syst. 2 (2010) 585–615; ESAIM: COCV
18 (2012) 36–80; To appear in J. Eur. Math. Soc. (2016)].
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1. Introduction

A rate-independent system is a specific case of quasi-static systems. It is time-dependent but its behavior is
slow enough so that the inertial effects can be ignored and the systems are only affected by external loadings.
Some specific rate-independent systems have been studied by many authors, including Francfort, Marigo, Larsen,
Dal Maso and Lazzaroni on brittle fractures [6, 8, 9, 11], Dal Maso et al. on the Cam-Clay model [5], Dal Maso
et al. on plasticity with softening [3, 4], Mielke on elasto-plasticity [13, 14], Mielke et al. on shape memory
alloys [22–24], Müller, Schmid and Mielke on super-conductivity [26,29], and Alberti and DeSimone on capillary
drops [1]. We refer to the surveys [15–18] by Mielke for the study in abstract setting as well as for further
references.

In this work, we consider a finite-dimensional normed vector space X , an evolution u : [0, T ] → X subject to
a force defined by an energy functional E : [0, T ]×X → [0, +∞) which is of class C1, and a dissipation function
Ψ(x) which is convex, non-degenerate and positively 1-homogeneous. Given an initial position x0 ∈ X which is
a local minimizer for the functional x �→ E (0, x)+Ψ(x−x0), we say that u is a solution to the rate-independent
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system (E , Ψ, x0) if u(0) = x0 and the following inclusion holds true,

0 ∈ ∂Ψ(u̇(t)) + DxE (t, u(t)) in X∗, for a.e. t ∈ (0, T ), (1.1)

where X∗ denotes the dual space of X , ∂Ψ is the subdifferential of Ψ and DxE is the differential of E w.r.t. the
spatial variable x.

In general, strong solutions to (1.1) may not exist [30]. Hence, the question on defining some weak solutions
arises naturally.

A widely-used weak solution is the energetic solution, which was first introduced by Mielke and Theil [22]
(see [10, 12, 16, 23] for further studies). A function u : [0, T ] → X is called an energetic solution to the rate-
independent system (E , Ψ, x0) if it satisfies:

(i) the initial condition u(0) = x0;
(ii) the global stability that for (t, x) ∈ [0, T ]× X ,

E (t, u(t)) ≤ E (t, x) + Ψ(x − u(t)); (1.2)

(iii) the energy-dissipation balance that for all 0 ≤ t1 ≤ t2 ≤ T ,

E (t2, u(t2)) − E (t1, u(t1)) =
∫ t2

t1

∂tE (s, u(s)) ds − DissΨ (u; [t1, t2]). (1.3)

Here, DissΨ is the usual total variation induced by Ψ(·)

DissΨ (u(t); [t1, t2]) := sup

{
N∑

i=1

Ψ(u(si) − u(si−1)) | N ∈ N, t1 = s0 < s1 < . . . < sN = t2

}
.

Note that when the energy functional is not convex, the global minimality (1.2) makes the energetic solutions
jump sooner than they should, and hence fails to describe the related physical phenomena (see Examples 2.4).
Therefore, some weak solutions based on local minimality are of interest.

Recently, an elegant weak solution based on vanishing viscosity method has been introduced by Mielke
et al. [19–21]. Their idea is to add a small viscosity term to the dissipation functional Ψ . This results in a new
dissipation functional Ψε, e.g. Ψε(x) = Ψ(x) + ε

2‖x‖2, which has super-linear growth at infinity and converges
to Ψ in an appropriate sense as ε tends to zero. They showed that the modified system (E , Ψε, x0) admits a
solution uε. The limit u of a subsequence uε as ε → 0, called BV solution, has the following properties:

(i) the initial condition u(0) = x0;
(ii) the weak local stability that for all t ∈ [0, T ]\J ,

− DxE (t, u(t)) ∈ ∂Ψ(0); (1.4)

(iii) the new energy-dissipation balance that for all 0 ≤ t1 ≤ t2 ≤ T ,

E (t2, u(t2)) − E (t1, u(t1)) =
∫ t2

t1

∂tE (s, u(s)) ds − Dissnew(u; [t1, t2]). (1.5)

Here, J is the jump set of u on [0, T ]

J := {t ∈ [0, T ] | u(·) is not continuous at t},
∂Ψ(0) is the subdifferential of Ψ at 0, 〈·, ·〉 is the dual pairing between X∗ and X

∂Ψ(0) := {η ∈ X∗ | 〈η, v〉 ≤ Ψ(v) ∀v ∈ X},
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and the new dissipation is defined by

Dissnew(u; [t1, t2]) := DissΨ (u; [t1, t2]) +
∑

t∈J∩(t1,t2)

(
Δnew(t; u(t−), u(t)) + Δnew(t; u(t), u(t+))

)
+Δnew(t1; u(t1), u(t+1 )) + Δnew(t2; u(t−2 ), u(t2))

−
∑

t∈J∩(t1,t2)

(
Ψ(u(t) − u(t−)) + Ψ(u(t+) − u(t))

)− Ψ(u(t+1 ) − u(t1)) − Ψ(u(t2) − u(t−2 )),

where Δnew(t; a, b) also depends on the energy functional E , the dissipation Ψ and the viscous norm ‖ · ‖

Δnew(t; a, b)=inf
{∫ 1

0

(
Ψ(γ̇(s))+‖γ̇(s)‖ · inf

z∈∂Ψ(0)
‖DxE (t, γ(s))+z‖∗

)
ds | γ ∈ AC([0, 1]; X), γ(0) = a, γ(1)=b

}
.

Here, the dual norm of ‖ · ‖ is defined by ‖η‖∗ := supv∈X\{0}
|〈η,v〉|
‖v‖ for all η ∈ X∗.

The new energy-dissipation balance is a deep insight observation, which contains the information at the jump
points. Indeed, it has been shown in [20,21] that if the BV solution u jumps at time t, there exists an absolutely
continuous path γ : [0, 1] → X , which called an optimal transition between u(t−) and u(t+), such that

(i) γ(0) = u(t−), γ(1) = u(t+), and there exists s ∈ [0, 1] such that γ(s) = u(t);
(ii) for all s ∈ [0, 1],−DxE (t, γ(s)) stays outside the set ∂Ψ(0) (if γ is of viscous type), or on the boundary of

∂Ψ(0) (if γ is of sliding type);
(iii) E (t, u(t−)) − E (t, u(t+)) =

∫ 1

0

(
Ψ(γ̇(s)) + ‖γ̇(s)‖ · infz∈∂Ψ(0) ‖DxE (t, γ(s)) + z‖∗

)
ds.

As we can see from the definition, BV solutions constructed using the vanishing viscosity method also depend
on viscosity. Usually, viscosity arises naturally from physical models.

To deal with local minimizers but with a totally different approach, Larsen [11] proposed the ε-stability
solution in the context of fracture mechanics. The idea is to choose minimizers among all ε-accessible states
w.r.t. the discretized solution at previous time-step. A state v is called ε-accessible w.r.t. state z if the total
energy at v is lower than the total energy at z; and there is a continuous path connecting z to v such that total
energy never increases by more than ε along this path. In this way, the limit u(t), when passing from discrete to
continuous time, satisfies the ε-stability: u(t) is ε-stable at every time t, i.e. there is no ε-accessible state w.r.t.
u(t). A similar version of optimal transition is obtained at jump points: if the solution jumps at time t, there
exists a continuous path connecting u(t−) to u(t+) such that total energy increases no more than ε along this
path. The energy-dissipation upper bound is proved for fixed ε > 0. The energy-dissipation equality is obtained
if the solution has only jumps of sizes less than ε.

In this work, we shall discuss one more way to deal with local minimizers. The idea is similar to the viscosity
method of Mielke−Rossi−Savaré in [19–21], but instead of adding a small viscosity into the dissipation, we
consider the minimization problem (1.2) in a small neighborhood of order ε. Passing from discrete to continuous
time, we obtain a limit xε(·). Then, by taking ε → 0, we get a solution u(·). The epsilon-neighborhood approach
was first suggested in ([14], Sect. 6) for the one-dimensional case when ε is chosen proportionally to the square
root of the time-step and the weak local stability was then obtained in [7].

Roughly speaking, the epsilon-neighborhood method is a special case of the vanishing viscosity approach
when the viscosity term is chosen as follows

Ψ0(v) :=

{
0 if |v| ≤ 1,

+∞ if |v| > 1.

However, this method was not discussed in [20, 21] since the viscosity there is required to be finite (see ([20],
Sect. 2.3 and [21], Sect. 2.1) for further discussions).
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In this article, we shall show that the BV solution constructed using the epsilon-neighborhood method u(·)
satisfies both the weak local stability and the new energy-dissipation balance, i.e. it satisfies the definition of
BV solutions introduced by Mielke et al. [19–21]. Similar to BV solutions constructed by vanishing viscosity,
BV solutions constructed using the epsilon-neighborhood method also depend on the norm that defines the
“neighborhood”. In Example 2.4 below, we shall make a comparison between different notions of weak solutions,
i.e. energetic solutions, BV solutions constructed by vanishing viscosity, BV solutions constructed by the epsilon-
neighborhood method as well as the solutions constructed by the method in [7]. For a detailed discussion on
the different notions of weak solutions, we refer to the papers [18, 25, 28, 31].

2. Main results

For simplicity, we shall consider the case when X = �d and the unit ball of the norm ‖ · ‖ which defines the
neighborhood has C1-boundary. In addition, we assume that the energy functional E (t, x) : [0, T ]×�d → [0,∞)
satisfies the following technical assumption: there exists λ = λ(E ) such that

|∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×�d. (2.1)

Remark 2.1. The condition (2.1) was proposed in [18]. Together with Gronwall’s inequality, (2.1) implies that

E (r, x) ≤ E (s, x) eλ|r−s|, |∂tE (r, x)| ≤ λE (s, x) eλ|r−s| (2.2)

for any r, s in [0, T ].

Definition 2.2 (Construction of discretized solutions). Let ε > 0, τ > 0 and let N ∈ N satisfy T ∈ [τN, τ(N +
1)). We define a sequence {xε,τ}N

i=0 by xε,τ
0 = x0 (initial position) and

xε,τ
i ∈ argmin{E (ti, x) + Ψ(x − xε,τ

i−1) | ‖x − xε,τ
i−1‖ ≤ ε} for every i ∈ {1, . . . , N}. (2.3)

The discretized solution xε,τ (·) is then constructed by interpolation

xε,τ (t) := xε,τ
i−1 for every t ∈ [ti−1, ti), i ∈ {1, . . . , N}.

Our main result is as follows.

Theorem 2.3 (BV solutions constructed using the epsilon-neighborhood method). Let E : [0, T ] × �d →
[0, +∞) be of class C1 and satisfy (2.1). The dissipation functional Ψ : R

d → [0,∞) is assumed to be convex,
positively 1-homogeneous and satisfy Ψ(v) > 0 for all v ∈ R

d\{0}. Given an initial datum x0 ∈ �d which is a
local minimizer of the functional x �→ E (0, x) + Ψ(x − x0). Then, we have the following properties:

(i) (Discretized solution) For any ε > 0 and τ > 0, there exists a discretized solution t �→ xε,τ (·) as described
above.

(ii) (Epsilon-neighborhood solution) For any fixed ε > 0, there exists a subsequence τn → 0 such that xε,τn(·)
converges pointwise to some limit xε(·). Moreover,

• (Epsilon local stability) If xε(·) is right-continuous at t, namely limt′→t+ xε(t′) = xε(t), then xε(t) satisfies
the epsilon local stability

E (t, xε(t)) ≤ E (t, x) + Ψ(x − xε(t)) for all ‖x − xε(t)‖ ≤ ε;

• (Energy-dissipation inequalities) We have DissΨ (xε; [0, T ]) ≤ C (independent of ε), ∂tE (·, xε(·)) ∈ L1(0, T )
and for all 0 ≤ s ≤ t ≤ T ,

−Dissnew(xε; [s, t]) ≤ E (t, xε(t)) − E (s, xε(s)) −
∫ t

s

∂tE (r, xε(r)) dr ≤ −DissΨ (xε; [s, t]).
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Figure 1. E (t, x) + |x| with t = 1/6 in Example 2.4.

(iii) (BV solution constructed by epsilon-neighborhood) There exists a subsequence εn → 0 such that xεn con-
verges pointwise to some BV function u. Furthermore, the function u satisfies:

• (Weak local stability) If t �→ u(t) is continuous at t, then

−∇xE (t, u(t)) ∈ ∂Ψ(0);

• (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, u(t)) − E (s, u(s)) =
∫ t

s

∂tE (r, u(r)) dr − Dissnew(u; [s, t]).

An explicit example is given below (a detailed explanation can be found in the Appendix).

Example 2.4. Consider the case X = �, Ψ(x) = |x|, x0 = 0 and the energy functional

E (t, x) := x2 − x4 + 0.3 x6 + t (1 − x2) − x + 6, t ∈ [0, 2].

(i) The strong solution is x(t) = 0 for t ∈ [0, 1). This solution cannot be extended continuously when t ≥ 1,
since it would violate the local minimality.

(ii) The energetic solution constructed by time-discretization satisfies

x(t) = 0 if t <
1
6

, x(1/6) ∈ {0,
√

5/3} and x(t) =

√
10 +

√
10 + 90t

3
if t >

1
6
·

This solution jumps at t = 1/6, from x = 0 to x =
√

5/3, but this jump is not physically relevant (see
Figs. 1 and 3). The energetic solution satisfies the energy-dissipation balance but it does not satisfy the
new energy-dissipation balance.

(iii) The BV solution corresponding to the viscous dissipation Ψε(x) = |x| + εx2 is

x(t) = 0 for all t ∈ [0, 2].

When t ≥ 1, this solution violates the local minimality.
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Figure 2. E (t, x) + |x| with t = 1 in Example 2.4.

(iv) The BV solution constructed by the epsilon-neighborhood method is

x(t) = 0 if t < 1 and x(t) =

√
10 +

√
10 + 90t

3
if t > 1.

This solution coincides with the strong solution up to the point where the strong solution exists. Moreover,
it jumps at t = 1 which is a physical relevant jump (see Figs. 2 and 3). The BV solution constructed using
the epsilon-neighborhood method satisfies the new energy-dissipation balance but it does not satisfy the
energy-dissipation balance.

(v) The solution constructed by the method in [7] coincides with the solution in (iv).

Both solutions in (iii) and (iv) satisfy the definition of BV solutions [19–21]. Weak local stability in this case is:
|∂xE (t, x(t))|∗ ≤ 1.

3. Epsilon-neighborhood solution xε

We start by considering the discretized solution.

Lemma 3.1 (Discretized solution). For any given initial state x0, ε > 0, τ > 0 and partition 0 = t0 < t1 <
. . . < tN ≤ T of [0, T ] satisfying tn − tn−1 = τ and T ∈ [τN, τ(N + 1)), there exists a sequence {xε,τ

i }N
i=0 such

that xε,τ
0 = x0 and for every i = 1, 2, . . . , N , xε,τ

i minimizes the functional

x �→ E (ti, x) + Ψ(x − xε,τ
i−1)

over x ∈ �d with ‖x − xε,τ
i−1‖ ≤ ε.

Moreover, the function t �→ xε,τ (t) defined by the interpolation xε,τ (t) = xε,τ
i−1 if t ∈ [ti−1, ti), i ∈ {1, . . . , N}

satisfies the following energy estimates:

(i) (Discrete bound) For any n ∈ {1, . . . , N} we have

E (tn, xε,τ
n ) ≤ E (0, x0) eλtn and E (0, xε,τ

n ) ≤ E (0, x0) e2λtn ;
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(ii) (Integral bound) For all 0 ≤ s ≤ t ≤ T , it holds that DissΨ (xε,τ ; [s, t]) < ∞, ∂tE (·, xε,τ (·)) ∈ L1(0, T ) and

E (t, xε,τ (t)) − E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r)) dr − DissΨ (xε,τ ; [s, t]).

Proof. Since x �→ E (tn, x) + Ψ(x − xε,τ
i−1) is continuous, this functional has a minimizer xε,τ

i in the compact set
‖x − xε,τ

i−1‖ ≤ ε. The energy estimates can be proved similarly for energetic solutions (see e.g. [16]). A detailed
proof can be found in the Appendix. �

Lemma 3.2 (Epsilon-neighborhood solution). Given any initial datum x0 ∈ �d such that x0 is a local min-
imizer of the functional x �→ E (0, x) + Ψ(x − x0). Let xε,τ be as in Lemma 3.1. There exists a subsequence
τn → 0 such that xε,τn(t) → xε(t) for all t ∈ [0, T ]. Moreover, the epsilon-neighborhood solution xε(·) satisfies
the following properties:

(i) (Epsilon local stability) If xε(·) is right-continuous at t, namely limt′→t+ xε(t′) = xε(t), then xε(t) satisfies
the epsilon local stability

E (t, xε(t)) ≤ E (t, x) + Ψ(x − xε(t)) for all ‖x − xε(t)‖ ≤ ε;

(ii) (Energy-dissipation inequalities) We have DissΨ (xε; [0, T ]) ≤ C (independent of ε), ∂tE (·, xε(·)) ∈ L1(0, T )
and for all 0 ≤ s ≤ t ≤ T ,

−Dissnew(xε; [s, t]) ≤ E (t, xε(t)) − E (s, xε(s)) −
∫ t

s

∂tE (r, xε(r)) dr ≤ −DissΨ (xε; [s, t]).
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Proof.

Step 1. Existence. By the Integral bound in Lemma 3.1, the fact that E is non-negative, and condition (2.2),
we have

DissΨ (xε,τ ; [0, T ]) ≤ E (0, x0) − E (T, xε,τ (T )) +
∫ T

0

∂tE (r, xε,τ (r)) dr

≤ E (0, x0) +
N+1∑
i=1

∫ ti

ti−1

λE (ti−1, x
ε,τ
i−1) eλ(r−ti−1) dr.

Here, we denote T by tN+1. Using the Discrete bound in Lemma 3.1, we get

DissΨ (xε,τ ; [0, T ]) ≤ E (0, x0) +
∫ T

0

λE (0, x0) eλr dr = E (0, x0) eλT .

Thus, {xε,τ (·)} has uniformly bounded variation and it is uniformly bounded. Therefore, by applying Helly’s se-
lection principle [1,12,27], we can find a subsequence τn → 0 and a BV function xε(·) such that xε,τn(t) → xε(t)
as n → ∞ for all t ∈ [0, T ].

Step 2. A consequence of the right-continuity. Let us denote by {tni }Nn

i=0 the partition corresponding to
τn and assume that t ∈ [tni−1, t

n
i ). It is obvious that

xε,τn

i−1 = xε,τn(t) → xε(t)

as n → ∞. Now we show that if xε(·) is right-continuous at t, then

xε,τn

i = xε,τn(tni ) → xε(t).

Let t′ > t. Thanks to the Integral bound in Lemma 3.1, we have

E (t′, xε,τn(t′)) − E (t, xε,τn(t)) + DissΨ (xε,τn ; [t, t′]) ≤
∫ t′

t

∂tE (r, xε,τn(r)) dr ≤ C|t′ − t|.

Here, the last inequality is due to the continuity of ∂tE and the fact that xε,τn is bounded on [0, T ]. For n being
large enough, we have t < tni < t′. Therefore,

Ψ(xε,τn

i − xε,τn

i−1 ) ≤ DissΨ (xε,τn ; [t, t′]).

Moreover, when n → ∞, we get

xε,τn(t) → xε(t) and xε,τn(t′) → xε(t′).

Thus, it follows from the above integral bound that

E (t′, xε(t′)) − E (t, xε(t)) + lim sup
n→∞

Ψ(xε,τn

i − xε,τn

i−1 ) ≤ C|t′ − t|.

The inequality above holds for all t′ > t. Hence, we can take t′ → t and use the assumption xε(t+) = xε(t) to
obtain

lim sup
n→∞

Ψ(xε,τn

i − xε,τn

i−1 ) ≤ 0.

Since xε,τn

i−1 → xε(t), we can conclude that xε,τn

i → xε(t) as n → ∞.
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Step 3. Stability. We show that for all t ∈ [0, T ], if xε(·) is right-continuous at t, then

E (t, xε(t)) ≤ E (t, z) + Ψ(z − xε(t)) for all ‖z − xε(t)‖ ≤ ε.

To this end, we first prove the result for z ∈ �d with ‖z − xε(t)‖ < ε. Since limn→∞ xε,τn(t) = xε(t), we get

‖z − xε,τn(t)‖ < ε

for n large enough. We shall follow the notations in Step 2. The fact that t ∈ [tni−1, t
n
i ) yields xε,τn(t) = xε,τn

i−1 .
From the definition of xε,τn

i and condition ‖z − xε,τn

i−1 ‖ < ε, we obtain

E (tni , xε,τn

i ) + Ψ(xε,τn

i − xε,τn

i−1 ) ≤ E (tni , z) + Ψ(z − xε,τn

i−1 ).

Taking the limit as n → ∞ and using the fact that both xε,τn

i−1 and xε,τn

i converge to xε(t) (see Step 2), we have

E (t, xε(t)) ≤ E (t, z) + Ψ(z − xε(t)) for all ‖z − xε(t)‖ < ε. (3.1)

Now for any z satisfying ‖z−xε(t)‖ = ε, we can choose a sequence zn converging to z such that ‖zn−xε(t)‖ < ε.
Applying (3.1) for zn, we get

E (t, xε(t)) ≤ E (t, zn) + Ψ(zn − xε(t)). (3.2)

Since the mapping y �→ E (t, y) + Ψ(y − xε(t)) is continuous, we can take the limit in (3.2) and then obtain the
result also for ‖z − xε(t)‖ = ε.

Step 4. Energy-dissipation inequalities. Using the Integral bound in Lemma 3.1, we have for all
0 ≤ s ≤ t ≤ T ,

E (t, xε,τn(t)) − E (s, xε,τn(s)) ≤
∫ t

s

∂tE (r, xε,τn(r)) dr − DissΨ (xε,τn ; [s, t]).

Since xε,τn(r) → xε(r) for all r ∈ [0, T ], we have

E (t, xε,τn(t)) − E (s, xε,τn(s)) → E (t, xε(t)) − E (s, xε(s))

and ∫ t

s

∂tE (r, xε,τn(r)) dr →
∫ t

s

∂tE (r, xε(r)) dr

as n → ∞. Moreover, we have

lim inf
n→∞ DissΨ (xε,τn ; [s, t]) ≥ DissΨ (xε; [s, t]).

Thus we can derive one energy-dissipation inequality

E (t, xε(t)) − E (s, xε(s)) ≤
∫ t

s

∂tE (r, xε(r)) dr − DissΨ (xε; [s, t]).

We shall use Lemma 3.3 to obtain the other energy-dissipation inequality,

E (t, xε(t)) − E (s, xε(s)) ≥
∫ t

s

∂tE (r, xε(r)) dr − Dissnew(xε; [s, t]). (3.3)
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To apply Lemma 3.3, it is sufficient to verify that −∇xE (t, xε(t)) ∈ ∂Ψ(0) for a.e. t ∈ (0, T ). Indeed, for every
t ∈ [0, T ] such that xε(·) is right-continuous at t, we have proved in Step 3 the ε-stability

E (t, xε(t)) ≤ E (t, x) + Ψ(x − xε(t)) for all ‖x − xε(t)‖ ≤ ε.

For every x satisfying ‖x − xε(t)‖ ≤ ε and for every s ∈ [0, 1], denote by z = xε(t) + s(x − xε(t)). Clearly,
‖z − xε(t)‖ ≤ ε. Thus,

E (t, xε(t)) ≤ E (t, z) + Ψ(z − xε(t)).

This inequality is equivalent to

E (t, xε(t)) − E (t, xε(t) + s(x − xε(t)))
s

≤ Ψ(x − xε(t)).

By taking s → 0+ and noticing that E is of class C1, we obtain that

〈−∇xE (t, xε(t)), x − xε(t)〉 ≤ Ψ(x − xε(t)) for all ‖x − xε(t)‖ ≤ ε.

Now, for every y ∈ R
d\{0}, applying the inequality above for ỹ = xε(t) + εy/‖y‖, we get

〈−∇xE (t, xε(t)), y〉 ≤ Ψ(y).

Hence, −∇xE (t, xε(t)) ∈ ∂Ψ(0) whenever xε(t) is right-continuous at t.
On the other hand, since xε(·) is a BV function, it is continuous except at most countably many points. Thus,

we can conclude that −∇xE (t, xε(t)) ∈ ∂Ψ(0) for a.e. t ∈ (0, T ). �

Lemma 3.3 (Lower bound of the new energy-dissipation balance). For any BV function u : [0, T ] → �
d, energy

functional E ∈ C1([0, T ] × �d) and dissipation functional Ψ which is convex and positively 1-homogeneous, if
−∇xE (t, u(t)) ∈ ∂Ψ(0) for a.e. t ∈ (0, T ), it holds that

E (t1, u(t1)) − E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s)) ds − Dissnew(u; [t0, t1]), for all 0 ≤ t0 < t1 ≤ T.

This result is due to Mielke et al. (see [20], Prop. 4.2) for finite-dimensional space and ([21], Thm. 3.11) for
infinite-dimensional space). For the readers’ convenience, a proof of Lemma 3.3 is included in the Appendix.

4. BV solutions constructed using the epsilon-neighborhood method

Lemma 4.1 (Limit of epsilon-neighborhood solutions). Given an initial datum x0 ∈ �d which is a local mini-
mizer of the functional x �→ E (0, x)+ Ψ(x− x0). Let xε be as in Lemma 3.2. There exists a subsequence εn → 0
and a BV function u such that xεn(t) → u(t) for all t ∈ [0, T ]. Moreover, the function u satisfies the following
properties:

(i) (Weak local stability) If t �→ u(t) is continuous at t, then

−∇xE (t, u(t)) ∈ ∂Ψ(0);

(ii) (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, u(t)) − E (s, u(s)) =
∫ t

s

∂tE (r, u(r)) dr − Dissnew(u; [s, t]).
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Proof.

Step 1. Existence. Since DissΨ (xε; [0, T ]) ≤ C is independent of ε, by Helly’s selection principle, we can find
a subsequence εn → 0 and a BV function u such that xεn(t) → u(t) as n → ∞ for all t ∈ [0, T ].

Step 2. Stability. Let

A := {t ∈ [0, T ] |xεn(·) is right continuous at t for all n ≥ 1}.
Then [0, T ]\A is at most countable. Moreover, for t ∈ A, by Lemma 3.2, we get

E (t, xεn(t)) ≤ E (t, z) + Ψ(z − xεn(t)) for all ‖z − xεn(t)‖ ≤ εn

for all n ≥ 1. For t ∈ A and n ≥ 1,

〈−∇xE (t, xεn(t)), z〉 ≤ Ψ(z) for all z ∈ R
d

can be shown in a similar manner as in Step 4, Lemma 3.2. Taking n → ∞, we obtain

〈−∇xE (t, u(t)), z〉 ≤ Ψ(z) for all z ∈ R
d, for all t ∈ A.

By continuity, we immediately have −∇xE (t, u(t)) ∈ ∂Ψ(0) provided that u is continuous at t.

Step 3. New energy-dissipation balance. By means of a similar proof of the energy inequalities in
Lemma 3.2, we have

−Dissnew(u; [s, t]) ≤ E (t, u(t)) − E (s, u(s)) −
∫ t

s

∂tE (r, u(r)) dr ≤ −Diss(u; [s, t]).

(The second inequality is a consequence of the corresponding inequality of xε in Lemma 3.2 and Fatou’s lemma,
while the first inequality follows from Lem. 3.3.)

Note that if the solution t �→ u(t) is continuous on [a, b] ⊂ [0, T ], then Diss(u; [a, b]) = Dissnew(u; [a, b]).
Thus, we immediately have the energy-dissipation balance

E (b, u(b)) − E (a, u(a)) −
∫ b

a

∂tE (r, u(r)) dr = −Diss(u; [a, b]) = −Dissnew(u; [a, b]).

Therefore, jump points remain to be considered. More precisely, we need to show that if u jumps at t ∈ (0, T ),
namely u(t−) �= u(t+), then

E (t, u(t+)) − E (t, u(t−)) = −Δnew(t, u(t−), u(t)) − Δnew(t, u(t), u(t+)).

This fact follows from Lemmas 3.3, 4.2 and 4.3. �

To prove the upper bound, we start by showing that the discretized solution xε,τ is “almost” an optimal
transition.

Lemma 4.2 (Approximate optimal transition). For the discretized solution xε,τ , if we write xj := xε,τ (tj), it
holds that

〈−∇xE (ti, xi), xi − xi−1〉 = Ψ(xi − xi−1) + min
η∈∂Ψ(0)

‖η + ∇xE (ti, xi)‖∗ · ‖xi − xi−1‖.

Consequently, for any δ > 0, there exist ε, τ ≤ δ and g(δ) satisfying g(δ) → 0 as δ → 0 and

E (t, xi−1) − E (t, xi) ≥
∫ b

a

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds − (b − a)g(δ)‖xi − xi−1‖,
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where t ∈ [ti−1, ti] and v : [a, b] → �
d is the linear curve connecting xi−1 and xi, namely

v(s) = xi−1 +
s − a

b − a
(xi − xi−1).

Proof. The proof is trivial when xi = xi−1. Hence, we shall assume that xi �= xi−1.

Step 1. Denote by m(z) := ‖z − xi−1‖ and h(z) := E (ti, z) + Ψ(z − xi−1). Recall that xi is a minimizer for

inf
m(z)≤ε

h(z).

Denote by c := ‖xi − xi−1‖. Since c ≤ ε, we can consider xi as a minimizer for

inf
m(z)=c

h(z).

Using the Lagrange multiplier, there exists λ ∈ � such that λ∇m(xi) ∈ ∂h(xi), or equivalently

λ∇m(xi) −∇xE (ti, xi) ∈ ∂Ψ(xi − xi−1).

The inclusion above implies two following conditions:

(i) For all z ∈ R
d, it holds that 〈λ∇m(xi) −∇xE (ti, xi), z〉 ≤ Ψ(z).

(ii) 〈λ∇m(xi) −∇xE (ti, xi), xi − xi−1〉 = Ψ(xi − xi−1).

Step 2. Since the function h1(s) = h(xi−1 + s(xi −xi−1)) satisfies h1(s) ≥ h1(1) for all s ∈ [0, 1], it follows that

E (ti, xi−1 + s(xi − xi−1)) + sΨ(xi − xi−1) ≥ E (ti, xi) + Ψ(xi − xi−1).

The above inequality can be rewritten as

E (ti, xi + (s − 1)(xi − xi−1)) − E (ti, xi)
s − 1

+ Ψ(xi − xi−1) ≤ 0.

Since E is of class C1, we can conclude that

〈∇xE (ti, xi), xi − xi−1〉 + Ψ(xi − xi−1) ≤ 0. (4.1)

In addition, (4.1) and condition (ii) in Step 1 give 〈λ∇m(xi), xi − xi−1〉 ≤ 0. Moreover, for all η ∈ ∂Ψ(0) we
have −Ψ(xi − xi−1) ≤ 〈−η, xi − xi−1〉. Thus, condition ii) implies

〈−λ∇m(xi), xi − xi−1〉 = 〈−∇xE (ti, xi), xi − xi−1〉 − Ψ(xi − xi−1)
≤ 〈−∇xE (ti, xi) − η, xi − xi−1〉
≤ ‖ −∇xE (ti, xi) − η‖∗ · ‖xi − xi−1‖.

Choosing η0 = −∇xE (ti, xi) + λ∇m(xi). Thanks to condition (i) in Step 1, η0 ∈ ∂Ψ(0). Moreover, the two
inequalities above become equalities with that choice of η0. Thus, we can write

〈−λ∇m(xi), xi − xi−1〉 = min
η∈∂Ψ(0)

‖η + ∇xE (ti, xi)‖∗ · ‖xi − xi−1‖.

Hence, we obtain that

〈−∇xE (ti, xi), xi − xi−1〉 = Ψ(xi − xi−1) + min
η∈∂Ψ(0)

‖η + ∇xE (ti, xi)‖∗ · ‖xi − xi−1‖.
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Step 3. Consequently, using |t − ti| ≤ δ, ‖xi−1 − xi‖ ≤ ε ≤ δ and the fact that ∇xE (·, ·) is continuous on
compact sets, there exists g(δ) such that g(δ) → 0 when δ → 0 and

〈−∇xE (t, v(s)), v̇(s)〉 ≥ Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ − g(δ) ‖v̇(s)‖

for every s ∈ [a, b]. Therefore,

E (t, xi−1) − E (t, xi) =
∫ b

a

〈−∇xE (t, v(s)), v̇(s)〉 ds

≥
∫ b

a

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds − (b − a)g(δ)‖xi − xi−1‖. �

Now we are in the position to prove the new energy-dissipation upper bound at jumps.

Lemma 4.3 (Upper bound). Let u be the function as in Lemma 4.1. If u(t−) �= u(t), then

Δnew(t, u(t−), u(t)) ≤ E (t, u(t−)) − E (t, u(t)).

Proof. Let 0 � τ � ε � δ � 1. By the definition of the discretized solution xε,τ , for every t ∈ (0, T ) we have

xε,τ (t − δ) = xε,τ (ti) and xε,τ (t) = xε,τ (ti+k)

for ti, ti+k ∈ [t − 2δ, t + δ].
We can construct an absolutely continuous function v : [0, 1] → �

d by linearly interpolating the following
(k + 3) points:

u(t−), xε,τ (t − δ) = xε,τ (ti), xε,τ (ti+1), . . . , xε,τ (ti+k) = xε,τ (t), u(t).

More precisely, we define
z0 = u(t−),
z1 = xε,τ (t − δ) = xε,τ (ti),
z2 = xε,τ (ti+1),
. . .

zk+1 = xε,τ (ti+k) = xε,τ (t),
zk+2 = u(t),

and denote r := 1/(k + 2) and

v(s) = zj +
s − jr

r
(zj+1 − zj) when s ∈ [jr, (j + 1)r], j = 0, 1, . . . , k + 1.

By the definition of the new dissipation, we have

Δnew(t, u(t−), u(t)) ≤
∫ 1

0

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds

=
k+1∑
j=0

∫ (j+1)r

jr

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds.

When j = 0 and j = k + 1, we estimate∫ (j+1)r

jr

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ≤ C

∫ (j+1)r

jr

‖v̇(s)‖ ds = C‖zj+1 − zj‖.
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When j = 1, 2, . . . , k, Lemma 4.2 yields the following inequality

∫ (j+1)r

jr

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds ≤ E (t, xε,τ (ti+j−1)) − E (t, xε,τ (ti+j))

+ rg(δ) · ‖xε,τ (ti+j) − xε,τ (ti+j−1)‖,

where g(δ) → 0 as δ → 0. Taking the sum over j = 0, 1, . . . , k + 1 and using the bound DissΨ (xε,τ ; [0, T ]) ≤ C
(independent of ε and τ), we find that

Δnew(t, u(t−), u(t)) ≤
∫ 1

0

Ψ(v̇(s)) + min
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖ ds

≤ E (t, xε,τ (t − δ)) − E (t, xε,τ (t)) + Cg(δ) + C‖u(t−) − xε,τ (t − δ)‖ + C‖xε,τ (t) − u(t)‖.

Taking the limit τ → 0, then ε → 0, then δ → 0, we conclude that

Δnew(t, u(t−), u(t)) ≤ E (t, u(t−)) − E (t, u(t)). �

5. Appendix: Technical proofs

5.1. Example 2.4

First of all, it is easy to verify that E (t, x) : [0, 2]×R → [0, +∞) is C1 and satisfies condition (2.1). Moreover,
x0 = 0 is a local minimizer for the functional x �→ E (0, x) + |x|.

Part I. Energetic solution via time-discretization

Step 1. Fix a time step τ > 0. To find the discretized solution xτ (t), it is sufficient to calculate xi := xτ (ti)
where 0 = t0 < . . . < tN ≤ 1 and ti − ti−1 = τ for all i = 1, 2, . . . , N. Here N ∈ N satisfies 1 ∈ [τN, τ(N + 1)).

We have x0 = 0 and for all i = 1, 2, . . . , N , xi is a minimizer of the functional

x ∈ � �→ E (ti, x) + |x − xi−1|.

Step 2. Let us fix t ∈ (0, 2] and consider the functional

F (x) := E (t, x) + |x| = x2 − x4 + 0.3 x6 + t(1 − x2) − x + |x| + 6, x ∈ �.

It is easy to see that

• When t ≤ 1, F (x) has two local minimizers (see Fig. 1)

x = 0 and x = y(t) :=

√
10 +

√
10 + 90t

3
·

Moreover,

F (y(t)) − F (0) =
1

243
(
10 +

√
10 + 90t

) (
8 − 18t −√

10 + 90t
)
,

which is positive if t < 1/6 and negative if t > 1/6. Hence F has a unique global minimizer x = 0 if
0 ≤ t < 1/6, and then F has a unique global minimizer at x = y(t) if 1/6 < t < 1.

• When t > 1, F (x) has a unique local (also global) minimizer at x = y(t).
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Step 3. By induction, we can show that if ti0 < 1/6 ≤ ti0+1, then xi = 0 for all i = 1, 2, . . . , i0, and either
xi0+1 = y(ti0+1), or xi0+1 = 0 and xi0+2 = y(ti0+2).

Next, we show that if ti−1 ≥ 1/6 and xi−1 = y(ti−1) > 0, then xi = y(ti). Recall that xi is a global minimizer
for the functional

x ∈ � �→ Fi(x) := E (ti, x) + |x − xi−1| = x2 − x4 + 0.3 x6 + ti(1 − x2) − x + |x − xi−1| + 6.

By using the triangle inequality −x + |x − xi−1| ≥ −xi−1 and the same analysis of F , we can conclude that
xi = y(ti).

Taking the limit as τ → 0, we obtain the energetic solution

x(t) = 0 if t ∈ [0, 1/6), x(1/6) ∈ {0,
√

5/3}, x(t) = y(t) if t ∈ [1/6, 2].

Step 4. Finally, we show that the energetic solution does not satisfy the new energy-dissipation balance. It is
sufficient to show that at the jump point t = 1/6,

E (t, x(t+)) − E (t, x(t−)) > −Δnew(t, x(t−), x(t+)).

Indeed, a direct computation gives us that at t = 1/6,

E (t, x(t+)) − E (t, x(t−)) = E (1/6,
√

5/3) − E (1/6, 0) = −
√

5/3.

On the other hand, at t = 1/6, we have

Δnew(t, x(t−), x(t+)) =
∫ √

15/3

0

max
{

1,

∣∣∣∣23y − 4y3 + 1.8y5 − 1
∣∣∣∣
}

dy =
185
486

+

√
5
3
·

Thus,
E (t, x(t+)) − E (t, x(t−)) > −Δnew(t, x(t−), x(t+)) at t = 1/6.

Part II. BV solution constructed using the viscous dissipation Ψε(x) = |x| + εx2.

We construct the BV solution using the vanishing viscosity method with the viscous term εx2 by means of the
method used in [20].

Let us briefly recall the construction of the BV solution. Given ε > 0 and τ > 0. We denote by e := ε/τ . Let
0 = t0 < . . . < tN ≤ T be a partition of [0, T ] satisfying ti − ti−1 = τ for every i ∈ {1, . . . , N} and T − tN < τ .
The discretized problem is to find a sequence {xε,τ}N

i=1 such that xε,τ
0 = 0 and xε,τ

i is a global minimizer for
the functional

x ∈ � �→ {E (ti, x) + |x − xτ,ε
i−1| + e|x − xτ,ε

n−1|2}
for every i = 1, 2, . . . , N and e = ε/τ. Then using interpolation and passing to the pointwise limit as τ → 0, ε → 0
and e = ε/τ → ∞, we obtain the BV solution.

Now coming back to our example, for t ∈ (0, 2], we consider the function

F (x) := E (t, x) + |x| + e|x|2 = t + (1 + e − t)x2 − x4 + 0.3 x6 − x + |x| + 6, x ∈ �.

If e is large enough (such that 1 + e − t ≥ 1), one has

F (x) ≥ t + x2 − x4 + 0.3 x6 + 6 = t +
1
6
x2 +

(√
5
6
x −

√
3
10

x3

)2

+ 6 ≥ t + 6 = F (0).

Thus F has a unique global minimizer at x = 0. Therefore, the discretized sequence {xτ,ε
i } is identically equal

to 0 and so is the BV solution.
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Part III. BV solution constructed using the epsilon-neighborhood method

Step 1. Let ε > 0 and τ > 0 be small. Let us compute xi := xε,τ (ti), where ti = i/N for i = 0, 1, . . . , N . Here
N ∈ N with 1 ∈ [τN, τ(N + 1)).

By definition, x0 = 0 and xi is a minimizer for the functional

Fi(x) := E (ti, x) + |x − xi−1| = x2 − x4 + 0.3 x6 + ti(1 − x2) − x + |x − xi−1| + 6

over x ∈ [xi−1 − ε, xi−1 + ε]. In particular, if xi−1 = 0, then xi is a minimizer for

F̃i(x) := x2 − x4 + 0.3 x6 + ti(1 − x2) − x + |x| + 6

over x ∈ [−ε, ε].
Recall that, if ti < 1, F̃i(x) has two local minimizers at x = 0 and

x = y(t) =

√
10 +

√
10 + 90ti
3

> 1.

Choose ε < 1, then x = 0 is the unique minimizer for F̃i(x) on x ∈ [−ε, ε]. Thus, we can conclude that xi = 0
whenever ti < 1.

Step 2. Assume that ti ∈ [1, 2]. We prove that xi ≤ y(ti) for all i by contradiction. Indeed,
by means of induction we can assume that xi−1 ≤ y(ti−1). Suppose that xi > y(ti). Since
xi−1 ≤ y(ti−1) < y(ti) < xi ≤ xi−1 + ε, there exists an a ∈ (y(ti), xi) ⊂ [xi−1 − ε, xi−1 + ε]. Using
the fact that the function x �→ gi(x) = x2 − x4 + 0.3x6 + ti(1 − x2) + 6 is strictly increasing in the interval
[y(ti),∞) and the triangle inequality f(x) = −x + |x − xi−1| ≥ −xi−1, we have

Fi(xi) = x2
i − x4

i + 0.3x6
i + ti(1 − x2

i ) − xi + |xi − xi−1| + 6 > a2 − a4 + 0.3a6 + ti(1 − a2) − xi−1 + 6 = Fi(a).

This contradicts to the assumption that xi is a minimizer for Fi(x) over x ∈ [xi−1 − ε, xi−1 + ε]. Thus, we must
have xi ≤ y(ti).

Moreover, if we choose ε < 1
2 , it holds that xi ≥ xi−1. Indeed, since gi(x) decreases in [− 1

2 , y(ti)) and f(x)
strictly decreases when x < xi−1, for every z ∈ [− 1

2 , xi−1)

Fi(z) = gi(z) + f(z) > gi(xi−1) + f(xi−1) = Fi(xi−1).

For the determination of xi, we have the following cases:

• xi−1 ∈ [0, y(ti) − ε). Observe that y(t) strictly increases in t. We can choose τ small enough (in this case
τ ≤ ε) so that y(ti)− y(ti−1) < ε. Thus, xi−1 < y(ti−1). Since f(x) = xi−1 for x ≥ xi−1 and gi(x) decreases
in the interval [xi−1, y(ti)), the function Fi(x) = gi(x) + f(x) decreases in the interval [xi−1, y(ti)). Thus,
xi = xi−1 + ε.

• For the case when xi−1 ∈ [y(ti)−ε, y(ti−1)], y(ti) is the unique minimizer of Fi(x) in the interval [xi−1, xi−1+
ε]. Thus, xi = y(ti).

Step 3. Taking the largest k and the smallest m such that xk = 0 and xm = y(tm). The number of steps L to
move from xk to xm is the integer part of y(tm)

ε . Since ε is fixed, this value is bounded from above by a constant
C =

[
5
ε

]
+ 1. Hence,

tm = tk + Lτ ≤ tk + Cτ.

Taking τ → 0, we have tm ≈ tk ≈ 1. Thus, for ε < 1
2 , the BV solution constructed using the epsilon-

neighborhood method is x(t) = xε(t) = 0 if t ∈ [0, 1) and x(t) = xε(t) = y(t) if t ∈ (1, 2]. At t = 1, x(t) can
take values either 0 or y(1).
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Step 4. We show that the BV solution constructed by epsilon-neighborhood does not satisfy the energy-
dissipation balance. At the jump point t = 1, one has

−|x(t−) − x(t+)| = −2
√

5
3

> E (t, x(t+)) − E (t, x(t−)) = −400
243

−
√

20
3

·

Part IV. The solution constructed by the method in [7].

Let us briefly recall the method used in [7]. Let N ∈ N be the numbers of time step. The neighborhood is chosen
equal to the usual time-step, i.e. ε = τ = T

N . Take t0 = 0 and x0 = 0. For j = 1, . . . , N , xj and tj are defined
as follows.

• xj minimizes {E (tj−1, x) + |x − xj−1|} among all states x such that |x − xj−1| ≤ ε.
• tj = tj−1 + τ − |xj − xj−1|.

By the same argument as in Part III, Step 1, we deduce that xi+1 = 0 and ti+1 = ti + τ if N < T and ti < 1.
Now assume that ti ∈ [1, 2]. Arguing as in Part III, Step 2, we have xi+1 ∈ [xi, y(ti)] and

• If xi ∈ [0, y(ti) − ε): xi+1 = xi + ε and ti+1 = ti.
• If xi ∈ [y(ti) − ε, y(ti−1)]: xi+1 = y(ti) and ti+1 = ti + τ − |y(ti) − xi|.

Taking τ to 0, we obtain the solution x(t) = 0 if t < 1, x(t) = y(t) if t ≥ 1.

5.2. Proof of the energy estimate in Lemma 3.1

Step 1. By the minimality of xε,τ
n at time tn, we have

E (tn, xε,τ
n ) + Ψ(xε,τ

n − xε,τ
n−1) ≤ E (tn, xε,τ

n−1) = E (tn−1, x
ε,τ
n−1) +

∫ tn

tn−1

∂tE (t, xε,τ
n−1) dt.

It follows from the assumption (2.2) that

∂tE (t, xε,τ
n−1) ≤ λE (tn−1, x

ε,τ
n−1) eλ(t−tn−1) for all t ∈ [tn−1, tn].

Applying Gronwall’s inequality we obtain

E (tn, xε,τ
n ) ≤ E (tn, xε,τ

n ) + Ψ(xε,τ
n − xε,τ

n−1)

≤
∫ tn

tn−1

λE (tn−1, x
ε,τ
n−1) eλ(t−tn−1)dt + E (tn−1, x

ε,τ
n−1)

= E (tn−1, x
ε,τ
n−1)(e

λ(tn−tn−1) − 1) + E (tn−1, x
ε,τ
n−1) = E (tn−1, x

ε,τ
n−1) eλ(tn−tn−1).

By induction,

E (tn, xε,τ
n ) ≤ E (tn−1, x

ε,τ
n−1) eλ(tn−tn−1) ≤ E (tn−2, x

ε,τ
n−2) eλ(tn−1−tn−2) eλ(tn−tn−1)

≤ . . . ≤ E (0, x0) eλ(t1−t0) eλ(t2−t1) . . . eλ(tn−tn−1) = E (0, x0) eλtn .

Finally, by (2.2) again,
E (0, xε,τ

n ) ≤ E (tn, xε,τ
n ) eλtn ≤ E (0, x0) e2λtn .

Step 2. Now we prove the integral bound. Assume that ti−1 < s ≤ ti < ti+1 < . . . < tj ≤ t < tj+1, where {tn}
is the partition corresponding to xε,τ . We start by writing

E (t, xε,τ (t)) − E (s, xε,τ (s)) = E (t, xε,τ (t)) − E (tj , xε,τ (tj)) + . . . (5.1)
+E (tj , xε,τ (tj)) − E (tj−1, x

ε,τ (tj−1)) + E (ti, xε,τ (ti)) − E (s, xε,τ (s)).
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By the minimality of xk := xε,τ (tk) at time tk, we have

E (tk, xk) − E (tk−1, xk−1) ≤ E (tk, xk−1)−Ψ(xk − xk−1)−E (tk−1, xk−1)=
∫ tk

tk−1

∂tE (r, xk−1) dr − Ψ(xk − xk−1).

Taking the sum for all k from i + 1 to j and using xε,τ (r) = xk−1 for all r ∈ [tk−1, tk), we get

j∑
k=i+1

[E (tk, xk) − E (tk−1, xk−1)] ≤
j∑

k=i+1

∫ tk

tk−1

∂tE (r, xε,τ (r)) dr −
j∑

k=i+1

Ψ(xk − xk−1). (5.2)

Moreover, since ti−1 < s ≤ ti and tj ≤ t < tj+1, we can write

E (ti, xε,τ (ti)) − E (s, xε,τ (s)) = E (ti, xi) − E (s, xi−1)
≤ E (ti, xi−1) − Ψ(xi − xi−1) − E (s, xi−1)

=
∫ ti

s

∂tE (r, xε,τ (r)) dr − Ψ(xi − xε,τ (s)). (5.3)

E (t, xε,τ (t)) − E (tj , xε,τ (tj)) = E (t, xj) − E (tj , xj) =
∫ t

tj

∂tE (r, xε,τ (r)) dr − Ψ(xε,τ (t) − xj), (5.4)

Thus, it follows from (5.1)−(5.4) that

E (t, xε,τ (t)) − E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r)) dr−
(

Ψ(xε,τ (t) − xj) +
j∑

k=i+1

Ψ(xk − xk−1)+Ψ(xi − xε,τ (s))

)

=
∫ t

s

∂tE (r, xε,τ (r)) dr − DissΨ(xε,τ ; [s, t]).

5.3. Proof of Lemma 3.3

Proof. Applying the chain rule formula for E ∈ C1 and u ∈ BV (see [2]), we get

E (t1, u(t1)) − E (t0, u(t0)) =
∫ t1

t0

∂tE (s, u(s)) ds +
∫ t1

t0

〈∇xE (s, u(s)), u′
co(s)〉 ds

+
∑

t∈J∩(t0,t1)

[
E (t, u(t)) − E (t, u(t−))

]
+

∑
t∈J∩(t0,t1)

[
E (t, u(t+)) − E (t, u(t))

]
+ E (t0, u(t+0 )) − E (t0, u(t0)) + E (t1, u(t1)) − E (t1, u(t−1 )).

The fact that −∇xE (t, u(t)) ∈ ∂Ψ(0) whenever u(t) is continuous at t yields∫ t1

t0

〈∇xE (s, u(s)), u′
co(s)〉 ds ≥ −

∫ t1

t0

Ψ(u′
co(s)) ds. (5.5)

Note that∫ t1

t0

Ψ(u′
co(s)) ds = Diss(u; [t0, t1]) −

∑
t∈J∩(t0,t1)

Ψ(u(t) − u(t−)) −
∑

t∈J∩(t0,t1)

Ψ(u(t+) − u(t))

−Ψ(u(t+0 ) − u(t0)) − Ψ(u(t1) − u(t−1 )). (5.6)

Moreover, for every absolutely continuous curve v in AC([0, 1];�d) such that v(0) = u(t−), v(1) = u(t) we have

|E (t, u(t)) − E (t, u(t−))| =
∣∣∣∣
∫ 1

0

〈∇xE (t, v(s)), v̇(s)〉 ds

∣∣∣∣ .
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For any η ∈ ∂Ψ(0), it holds that 〈η, v〉 ≤ Ψ(v) for all v ∈ R
d. Thus, at every point s ∈ [0, 1] for which the

derivative v̇(s) exists, we can write
−Ψ(v̇(s)) ≤ 〈−η, v̇(s)〉 .

Hence,

〈−∇xE (t, v(s)), v̇(s)〉 = Ψ(v̇(s)) − Ψ(v̇(s)) + 〈−∇xE (t, v(s)), v̇(s)〉
≤ Ψ(v̇(s)) + 〈−η, v̇(s)〉 + 〈−∇xE (t, v(s)), v̇(s)〉
≤ Ψ(v̇(s)) + ‖ − η −∇xE (t, v(s))‖∗ · ‖v̇(s)‖.

The inequality above holds for every η ∈ ∂Ψ(0). Thus, we obtain

〈−∇xE (t, v(s)), v̇(s)〉 ≤ Ψ(v̇(s)) + inf
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖.

Therefore, for any absolutely continuous curve v in AC([0, 1]; Rd) satisfying v(0) = u(t−), v(1) = u(t), it holds
that

|E (t, u(t)) − E (t, u(t−))| ≤
∫ 1

0

Ψ(v̇(s)) + inf
η∈∂Ψ(0)

‖η + ∇xE (t, v(s))‖∗ · ‖v̇(s)‖.

By the definition of Δnew(t, u(t−), u(t)), we can conclude that

|E (t, u(t)) − E (t, u(t−))| ≤ Δnew(t, u(t−), u(t)). (5.7)

Similarly, we also get

|E (t, u(t+)) − E (t, u(t))| ≤ Δnew(t, u(t), u(t+)). (5.8)

Thus, it follows from (5.5)−(5.8) that

E (t1, u(t1)) − E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s)) ds − Diss(u; [t0, t1])

+
∑

t∈J∈(t0,t1)

Ψ(u(t−) − u(t)) +
∑

t∈J∈(t0,t1)

Ψ(u(t) − u(t+))

+ Ψ(u(t0) − u(t+0 )) + Ψ(u(t−1 ) − u(t1))

−
∑

t∈J∩(t0,t1)

Δnew(t, u(t−), u(t)) −
∑

t∈J∩(t0,t1)

Δnew(t, u(t), u(t+))

− Δnew(t0, u(t0), u(t+0 )) − Δnew(t1, u(t−1 ), u(t1))

=
∫ t1

t0

∂tE (s, u(s)) ds − Dissnew(u; [t0, t1]). �
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Poincaré Anal. Non Linéaire 27 (2010) 257–290.

[7] M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Analysis
13 (2006) 151–167.

[8] G. Francfort and C.J. Larsen, Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math.
56 (2003) 1465–1500.

[9] G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998)
1319–1342.

[10] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies.
J. Reine Angew. Math. 595 (2006) 55–91.

[11] C.J. Larsen, Epsilon-stable quasistatic brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630–654.

[12] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ.
22 (2005) 73–99.

[13] A. Mielke, Finite Elastoplasticity, Lie Groups and Geodesics on SL(d), In Geometry, Dynamics, and Mechanics. Edited by
P. Newton, A. Weinstein and P. Holmes. Springer-Verlag (2003) 61–90.

[14] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15
(2003) 351–382.

[15] A. Mielke, Evolution of Rate-Independent Systems. Handb. Differ. Equ. Evol. Equ. Elsevier B. V. 2 (2005) 461–559.

[16] A. Mielke, A Mathematical Framework for Generalized Standard Materials in the Rate-independent Case, in Multifield prob-
lems in Fluid and Solid Mechanics. In Ser. Lect. Notes Appl. Comput. Mechanics. Springer (2006).

[17] A. Mielke, Modeling and Analysis of Rate-independent Processes. Lipschitz Lectures. University of Bonn (2007).

[18] A. Mielke, Differential, Energetic and Metric Formulations for Rate-independent Processes. Lect. Notes of C.I.M.E. Summer
School on Nonlinear PDEs and Applications. Cetraro (2008).
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