95 research outputs found

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    Machine Learning of Coq Proof Guidance: First Experiments

    Full text link
    We report the results of the first experiments with learning proof dependencies from the formalizations done with the Coq system. We explain the process of obtaining the dependencies from the Coq proofs, the characterization of formulas that is used for the learning, and the evaluation method. Various machine learning methods are compared on a dataset of 5021 toplevel Coq proofs coming from the CoRN repository. The best resulting method covers on average 75% of the needed proof dependencies among the first 100 predictions, which is a comparable performance of such initial experiments on other large-theory corpora

    Syntactic-Semantic Form of Mizar Articles

    Get PDF
    Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains. However, accessing this publicly available huge corpus of formalized data is not straightforward due to the complexity of the underlying Mizar language, which has been designed to resemble informal mathematical papers. For this reason, most systems exploring the library are based on an internal XML representation format used by semantic modules of Mizar. This representation is easily accessible, but it lacks certain syntactic information available only in the original human-readable Mizar source files. In this paper we propose a new XML-based format which combines both syntactic and semantic data. It is intended to facilitate various applications of the Mizar library requiring fullest possible information to be retrieved from the formalization files

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Dependencies in Formal Mathematics: Applications and Extraction for Coq and Mizar

    Full text link
    Two methods for extracting detailed formal dependencies from the Coq and Mizar system are presented and compared. The methods are used for dependency extraction from two large mathematical repositories: the Coq Repository at Nijmegen and the Mizar Mathematical Library. Several applications of the detailed dependency analysis are described and proposed. Motivated by the different applications, we discuss the various kinds of dependencies that we are interested in,and the suitability of various dependency extraction methods

    Four Decades of Mizar

    Get PDF

    Proof in Context -- Web Editing with Rich, Modeless Contextual Feedback

    Full text link
    The Agora system is a prototypical Wiki for formal mathematics: a web-based system for collaborating on formal mathematics, intended to support informal documentation of formal developments. This system requires a reusable proof editor component, both for collaborative editing of documents, and for embedding in the resulting documents. This paper describes the design of Agora's asynchronous editor, that is generic enough to support different tools working on editor content and providing contextual information, with interactive theorem proverss being a special, but important, case described in detail for the Coq theorem prover.Comment: In Proceedings UITP 2012, arXiv:1307.152
    corecore