2,316 research outputs found

    Cyclic lowest density MDS array codes

    Get PDF
    Three new families of lowest density maximum-distance separable (MDS) array codes are constructed, which are cyclic or quasi-cyclic. In addition to their optimal redundancy (MDS) and optimal update complexity (lowest density), the symmetry offered by the new codes can be utilized for simplified implementation in storage applications. The proof of the code properties has an indirect structure: first MDS codes that are not cyclic are constructed, and then transformed to cyclic codes by a minimum-distance preserving transformation

    On self-dual double circulant codes

    Full text link
    Self-dual double circulant codes of odd dimension are shown to be dihedral in even characteristic and consta-dihedral in odd characteristic. Exact counting formulae are derived for them and used to show they contain families of codes with relative distance satisfying a modified Gilbert-Varshamov bound.Comment: 8 page

    Optimal Binary Locally Repairable Codes via Anticodes

    Full text link
    This paper presents a construction for several families of optimal binary locally repairable codes (LRCs) with small locality (2 and 3). This construction is based on various anticodes. It provides binary LRCs which attain the Cadambe-Mazumdar bound. Moreover, most of these codes are optimal with respect to the Griesmer bound

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure
    • 

    corecore