13 research outputs found

    New Computational Upper Bounds for Ramsey Numbers R(3,k)

    Get PDF
    Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: R(3,10) <= 42, R(3,11) <= 50, R(3,13) <= 68, R(3,14) <= 77, R(3,15) <= 87, and R(3,16) <= 98. All of them are improvements by one over the previously best known bounds. Let e(3,k,n) denote the minimum number of edges in any triangle-free graph on n vertices without independent sets of order k. The new upper bounds on R(3,k) are obtained by completing the computation of the exact values of e(3,k,n) for all n with k <= 9 and for all n <= 33 for k = 10, and by establishing new lower bounds on e(3,k,n) for most of the open cases for 10 <= k <= 15. The enumeration of all graphs witnessing the values of e(3,k,n) is completed for all cases with k <= 9. We prove that the known critical graph for R(3,9) on 35 vertices is unique up to isomorphism. For the case of R(3,10), first we establish that R(3,10) = 43 if and only if e(3,10,42) = 189, or equivalently, that if R(3,10) = 43 then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that R(3,10) <= 42.Comment: 28 pages (includes a lot of tables); added improved lower bound for R(3,11); added some note

    Ramsey numbers R(K3,G) for graphs of order 10

    Get PDF
    In this article we give the generalized triangle Ramsey numbers R(K3,G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and theoretical results. We also describe an optimized algorithm for the generation of all maximal triangle-free graphs and triangle Ramsey graphs. All Ramsey numbers up to 30 were computed by our implementation of this algorithm. We also prove some theoretical results that are applied to determine several triangle Ramsey numbers larger than 30. As not only the number of graphs is increasing very fast, but also the difficulty to determine Ramsey numbers, we consider it very likely that the table of all triangle Ramsey numbers for graphs of order 10 is the last complete table that can possibly be determined for a very long time.Comment: 24 pages, submitted for publication; added some comment

    An exploration in Ramsey theory

    Get PDF
    We present several introductory results in the realm of Ramsey Theory, a subfield of Combinatorics and Graph Theory. The proofs in this thesis revolve around identifying substructure amidst chaos. After showing the existence of Ramsey numbers of two types, we exhibit how these two numbers are related. Shifting our focus to one of the Ramsey number types, we provide an argument that establishes the exact Ramsey number for h(k, 3) for k ≥ 3; this result is the highlight of this thesis. We conclude with facts that begin to establish lower bounds on these types of Ramsey numbers for graphs requiring more substructure
    corecore