6 research outputs found

    New Complexity Estimation on the Rainbow-Band-Separation Attack

    Get PDF
    Multivariate public key cryptography is a candidate for post-quantum cryptography, and it allows generating particularly short signatures and fast verification. The Rainbow signature scheme proposed by J. Ding and D. Schmidt is such a multivariate cryptosystem and is considered secure against all known attacks. The Rainbow-Band-Separation attack recovers a secret key of Rainbow by solving certain systems of quadratic equations, and its complexity is estimated by the well-known indicator called the degree of regularity. However, the degree of regularity generally is larger than the solving degree in experiments, and an accurate estimation cannot be obtained. In this paper, we propose a new indicator for the complexity of the Rainbow-Band-Separation attack using the F4F_4 algorithm, which gives a more precise estimation compared to one using the degree of regularity. This indicator is deduced by the two-variable power series i=1m(1t1di1t2di2)(1t1)n1(1t2)n2,\frac{\prod _{i=1}^m(1-t_1^{d_{i1}}t_2^{d_{i2}})}{(1-t_1)^{n_1}(1-t_2)^{n_2}}, which coincides with the one-variable power series at t1=t2t_1=t_2 deriving the degree of regularity. Moreover, we show a relation between the Rainbow-Band-Separation attack using the hybrid approach and the HighRank attack. By considering this relation and our indicator, we obtain a new complexity estimation for the Rainbow-Band-Separation attack. Consequently, we are able to understand the precise security of Rainbow against the Rainbow-Band-Separation attack using the F4F_4 algorithm

    On Multivariate Algorithms of Digital Signatures of Linear Degree and Low Density.

    Get PDF
    Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring. The importance of this direction for the construction of multivariate digital signature systems is well known. We suggest modification of the known digital signature systems for which some of cryptanalytic instruments were found . This modification prevents possibility to use recently developed attacks on classical schemes such as rainbow oil and vinegar system, and LUOV. Modification does not change the size of hashed messages and size of signatures. Basic idea is the usage of multivariate messages of unbounded degree and polynomial density for the construction of public rules. Modified algorithms are presented for standardization and certification studies

    On Extremal Expanding Algebraic Graphs and post-quantum secure delivery of passwords, encryption maps and tools for multivariate digital signatures.

    Get PDF
    Expanding graphs are known due to their remarkable applications to Computer Science. We are looking for their applications to Post Quantum Cryptography. One of them is postquantum analog of Diffie-Hellman protocol in the area of intersection of Noncommutative and Multivariate Cryptographies .This graph based protocol allows correspondents to elaborate collision cubic transformations of affine space Kn defined over finite commutative ring K. Security of this protocol rests on the complexity of decomposition problem of nonlinear polynomial map into given generators. We show that expanding graphs allow to use such output as a ‘’seed’’ for secure construction of infinite sequence of cubic transformation of affine spaces of increasing dimension. Correspondents can use the sequence of maps for extracting passwords for one time pads in alphabet K and other symmetric or asymmetric algorithms. We show that cubic polynomial maps of affine spaces of prescribed dimension can be used for transition of quadratic public keys of Multivariate Cryptography into the shadow of private areas

    On Multivariate Algorithms of Digital Signatures on Secure El Gamal Type Mode.

    Get PDF
    The intersection of Non-commutative and Multivariate cryptography contains studies of cryptographic applications of subsemigroups and subgroups of affine Cremona semigroups defined over finite commutative ring K with the unit. We consider special subsemigroups (platforms) in a semigroup of all endomorphisms of K[x_1, x_2, …, x_n]. Efficiently computed homomorphisms between such platforms can be used in Post Quantum key exchange protocols when correspondents elaborate common transformation of (K*)^n. The security of these schemes is based on a complexity of decomposition problem for an element of a semigroup into a product of given generators. We suggest three such protocols (with a group and with two semigroups as platforms) for their usage with multivariate digital signatures systems. The usage of protocols allows to convert public maps of these systems into private mode, i.e. one correspondent uses the collision map for safe transfer of selected multivariate rule to his/her partner. The ‘’ privatisation’’ of former publicly given map allows the usage of digital signature system for which some of cryptanalytic instruments were found ( estimation of different attacks on rainbow oil and vinegar system, cryptanalytic studies LUOV) with the essentially smaller size of hashed messages. Transition of basic multivariate map to safe El Gamal type mode does not allow the usage of cryptanalytic algorithms for already broken Imai - Matsumoto cryptosystem or Original Oil and Vinegar signature schemes proposed by J.Patarin. So even broken digital signatures schemes can be used in the combination with protocol execution during some restricted ‘’trust interval’’ of polynomial size. Minimal trust interval can be chosen as a dimension n of the space of hashed messages, i. e. transported safely multivariate map has to be used at most n times. Before the end of this interval correspondents have to start the session of multivariate protocol with modified multivariate map. The security of such algorithms rests not on properties of quadratic multivariate maps but on the security of the protocol for the map delivery and corresponding NP hard problem

    On Multivariate Algorithms of Digital Signatures Based on Maps of Unbounded Degree Acting on Secure El Gamal Type Mode.

    Get PDF
    Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring given in the standard form x_i →f_i(x_1, x_2,…, x_n), i=1, 2,…, n. The importance of this direction for the constructions of multivariate digital signatures systems is well known. Close attention of researchers directed towards studies of perspectives of quadratic rainbow oil and vinegar system and LUOV presented for NIST postquantum certification. Various cryptanalytic studies of these signature systems were completed. Recently some options to modify theses algorithms as well as all multivariate signature systems which alow to avoid already known attacks were suggested. One of the modifications is to use protocol of noncommutative multivariate cryptography based on platform of endomorphisms of degree 2 and 3. The secure protocol allows safe transfer of quadratic multivariate map from one correspondent to another. So the quadratic map developed for digital signature scheme can be used in a private mode. This scheme requires periodic usage of the protocol with the change of generators and the modification of quadratic multivariate maps. Other modification suggests combination of multivariate map of unbounded degree of size O(n) and density of each f_i of size O(1). The resulting map F in its standard form is given as the public rule. We suggest the usage of the last algorithm on the secure El Gamal mode. It means that correspondents use protocols of Noncommutative Cryptography with two multivariate platforms to elaborate safely a collision endomorphism G: x_i → g_i of linear unbounded degree such that densities of each gi are of size O(n^2). One of correspondents generates mentioned above F and sends F+G to his/her partner. The security of the protocol and entire digital signature scheme rests on the complexity of NP hard word problem of finding decomposition of given endomorphism G of K[x_1,x_2,…,x_n ] into composition of given generators 1^G, 2^G, …t^G, t>1 of the semigroup of End(K[x_1 ,x_2 ,…,x_n]). Differently from the usage of quadratic map on El Gamal mode the case of unbounded degree allows single usage of the protocol because the task to approximate F via interception of hashed messages and corresponding signatures is unfeasible in this case

    On Multivariate Algorithms of Digital Signatures Based on Maps of Unbounded Degree Acting on Secure El Gamal Type Mode

    Get PDF
    Multivariate cryptography studies applications of endomorphisms of K[x1 x2, …, xn] where K is a finite commutative ring given in the standard form xi →f1 (x1, x2,…, xn), i=1, 2,…, n. The importance of this direction for the constructions of multivariate digital signatures systems is well known. Close attention of researchers directed towards studies of perspectives of efficient quadratic unbalanced rainbow oil and vinegar system (RUOV) presented for NIST postquantum certification. Various cryptanalytic studies of these signature systems were completed. During Third Round of NIST standardisation projects ROUV digital signature system were rejected. Recently some options to seriously modify theses algorithms as well as all multivariate signature systems which alow to avoid already known attacks were suggested. One of the modifications is to use protocol of noncommutative multivariate cryptography based on platform of endomorphisms of degree 2 and 3. The secure protocol allows safe transfer of quadratic multivariate map from one correspondent to another. So the quadratic map developed for digital signature scheme can be used in a private mode. This scheme requires periodic usage of the protocol with the change of generators and the modification of quadratic multivariate maps. Other modification suggests combination of multivariate map of unbounded degree of size O(n) and density of each fi of size O(1). The resulting map F in its standard form is given as the public rule. We suggest the usage of the last algorithm on the secure El Gamal mode. It means that correspondents use protocols of Noncommutative Cryptography with two multivariate platforms to elaborate safely a collision endomorphism G: xi → gi of linear unbounded degree such that densities of each gi are of size O(n2 ). One of correspondents generates mentioned above F and sends F+G to his/her partner. The security of the protocol and entire digital signature scheme rests on the complexity of NP hard word problem of finding decomposition of given endomorphism G of K[x1,x2,…,xn] into composition of given generators 1G, 2G, …tG, t>1 of the semigroup of End(K[x1,x2,…,xn]). Differently from the usage of quadratic map on El Gamal mode the case of unbounded degree allows single usage of the protocol because the task to approximate F via interception of hashed messages and corresponding signatures is unfeasible in this case
    corecore