
UDC 001.8 

 

On Multivariate Algorithms of Digital Signatures Based on Maps 
of Unbounded Degree Acting on Secure El Gamal Type Mode 

 

V. O. Ustimenko 
 

Royal Holloway University of London, UK,   

Institute of Telecommunications and Global Information Space, Kyiv, Ukraine 

 

__________________________________________________________________________________________ 

Abstract  
Multivariate cryptography studies applications of  endomorphisms of K[x1 x2, …, xn]  where K is a 

finite commutative ring  given in the standard form xi →f1 (x1, x2,…, xn),  i=1, 2,…, n. The importance 

of this direction for the constructions of  multivariate digital signatures systems  is well known. Close 

attention of researchers directed towards studies of perspectives of efficient quadratic  unbalanced 

rainbow oil and vinegar system (RUOV) presented for NIST postquantum certification. Various 

cryptanalytic studies of these signature systems were completed. During Third Round of NIST 

standardisation projects ROUV digital signature system were rejected. Recently some options to 

seriously modify theses algorithms as well as all multivariate signature systems  which alow to avoid  

already known attacks were suggested. One of the modifications is to use protocol of noncommutative 

multivariate cryptography based on platform of endomorphisms of degree 2 and 3. The secure 

protocol allows safe transfer of quadratic multivariate map from one correspondent to another. So the 

quadratic map developed for digital signature scheme can be used in a private mode. This scheme 

requires periodic usage of the protocol with the change of generators and the modification of 

quadratic multivariate maps. Other modification suggests combination of multivariate  map of 

unbounded degree of size O(n) and density of each fi of size O(1). The resulting map F in its standard 

form is given as the public rule. We suggest the usage of the last algorithm on the secure El Gamal 

mode. It means that correspondents use protocols of Noncommutative Cryptography with two 

multivariate platforms to elaborate safely a collision endomorphism G: xi → gi of linear unbounded 

degree such that densities of each gi  are of size O(n
2
). One of correspondents generates mentioned 

above F and sends F+G to his/her partner. 

The security of the protocol and entire digital signature scheme rests on the complexity of NP hard 

word problem of finding decomposition of given endomorphism G of   K[x1,x2,…,xn] into composition 

of given generators 
1
G, 

2
G, …

t
G, t>1 of the semigroup of End(K[x1,x2,…,xn]). Differently from the 

usage of quadratic map on El Gamal mode the case of unbounded degree allows single usage of the 

protocol because the task to approximate F via interception of hashed messages and corresponding 

signatures is unfeasible in this case. 
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1. Introduction: On Multivariate 
Digital Signature Schemes of Post 
Quantum Cryptography 

Post Quantum Cryptography (PQC) is an 

answer to a threat coming from a full-scale 

quantum computer able to execute Shor’s 

algorithm. With this algorithm implemented  on 

a quantum computer, currently used public key 

schemes, such as RSA and elliptic curve 

cryptosystems, are no longer secure. The U.S. 

NIST made a step toward mitigating the risk of 

quantum attacks by announcing the PQC 

__________________________________________________________________________________

78

On Multivariate Algorithms of Digital Signatures Based on Maps of Unbounded Degree Acting ...



standardisation process for new public key 

algorithms. In March 2019 NIST published a list 

of candidates qualified to the second round of the 

standardisation process. The cryptosystems are 

designed for  tasks of information exchange and  

digital signatures. In July 2020 the list of 

algorithms selected for the Third Round of NIST 

competition has been published. 

In the case of digital signatures preliminary 

analysis indicates some advantages of algorithms 

based on quadratic public rules of Multivariate 

Cryptography. These systems provide the 

smallest sizes of the used hashed messages  and 

digital signatures. 

Cryptanalytic studies of perspectives of 

quadratic rainbow oil and vinegar systems and  

LUOV have their own history. Papers [1] and [2] 

investigates various options of attacks on the 

systems. These studies show some advantages of  

ROUV in comparison with LOUV. So the 

ROUV but not LOUV was selected for the Third 

ROUND of NIST competition. Anyway during 

this round due to cryptanalytical studies (see [35] 

) these digital signatures were regicted. In July 

2022 the firs four winners of NIST competition 

were announced.  All of them are developed in 

terms of Lattice based Cryptography,  

Noteworthy that other 4 directions of 

Postquantum Cryptography and 

Noncommutative Cryptography are still 

promising to bring scure instruments of PQC 

because they use well known NP hard problems 

in their foundations. 

So, we start the search for the possible 

modifications of general multivariate digital 

signature schemes based on quadratic public 

rules such that attacks described in [1] and [2] (in 

the case of ROUV and LOUV)   will be 

eliminated. Recall that classical multivariate 

signature system is based on public quadratic 

map  P' of vector space Fq
m
 onto Fq

 n 
of kind P’= 

T1PT2  where the map  P is given by rule 

xi→fi(x1, x2,… , xm), i=1,2,…,n  defined by 

quadratic polynomials fi and bijective affine 

transformations  T1,T2 of spaces Fq
 m 

and Fq
 n

. 

Users Alice and Bob use selected encryption 

function F and hash function which creates hash 

vector H(c) from vector space Fq
m
. Alice writes 

the plaintext p  and computes corresponding 

ciphertext c.  The knowledge of the 

decomposition  T1PT2 and private algorithm to 

compute value of P
-1

 in a given point allows 

Alice to compute some reimage P'
-1

(H(c))=(u1, 

u2, …, un)=u of H(c) (so called signature) and to 

send u to Bob via an open channel. He checks 

the identity P'(u)=v(c). This is his confirmation 

that ciphertext is sent by Alice. Finally he 

decrypts. The security of presented above 

algorithm  rests on the complexity of the problem 

of computation of reimage for non-bijective P’. 

This is a well known general NP hard  problem.  

Noteworthy that in the case of Unbalanced 

Oil and Vinegar the partition of variables into 

two parts of ‘’oil’’ and ‘’vinegar’’ unknowns and 

special form of P allows Alice to compute 

element from P
-1

(H(c)). She uses a specialisation 

of  ‘’vinegar’’ variables via substitution of 

pseudorandom parameters, such specialisation  

reduces the search for reimage to solving the 

system of linear equations. 

We start the search for the options to modify 

general digital scheme of multivariate 

cryptography, which eliminate attacks 

investigated in [1] and [2]. We suggest the 

following three modifications.  

The first of them is based on the idea that the 

map P' is not given publicly [3]. Correspondents 

execute the protocol of non-commutative 

cryptography based on the platform of stable 

multivariate transformations of degree 2 in n 

variables (see [5]). They elaborate the quadratic 

collision map G from the vector space Fq
m
 onto  

Fq
n
. The security of this  protocol rests on the 

complexity of finding the decomposition of 

nonlinear element of the subsemigroup of  

endomorphisms of Fq[x1, x2,…, xn] into the 

composition of its given generators. Postquantum 

algorithm to solve this problem in polynomial 

time is unknown. Secondly one of 

correspondents selects quadratic map P’ and 

sends  G+P' to his/her partner. So 

correspondents can use digital signature system 

defined by P’ which is unknown to adversary. 

The postquantum protocol has to be used 

periodically with different data. Users can 

change maps T1, T2, internal parameters of P 

keeping the class of chosen schemes as well as 

generators of stable semigroups of degree 2.  

In the second modification the map T1 has to 

be changed for a  composition ST1 of T1with a 

bijective map S of kind xi →si(x1, x2, …, xn) of 

unbounded linear degree >m  such that each  si 

has density O(1) [4]. Thus  P'=ST1PT2 is  a map 

of degree O(n) and density O(n
2
). The map  P' of 

the second scheme is given to the public. Attacks 

investigated in [1] and [2] are eliminated because 

the degree of P’ is not bounded by a small 

constant. 

The third scheme, which is introduced in this 

paper, is based on the usage of multivariate 
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protocol of non-commutative cryptography with 

two distinct platforms which allows to elaborate 

collision map G of unbounded degree of size  

O(n) and density of size O(n
2
) (see [5]). On 

receiving the collision map one of 

correspondents sends G+P' to his/her partner. 

The protocol can be used only once because the 

adversary is unable to approximate unknown P' 

of unbounded degree via interception of hash 

vectors and corresponding signatures.  

Several multivariate digital signature schemes 

(m.d.s.s.) with the usage of protocols of non-

commutative cryptography as above were 

integrated with the state electronic management 

networks  for the tasks of telemedicine and e-

governing in Ukraine. These m.d.s.s. are used for 

the authentication of users. Some of them will be 

presented for the standardisation and certification 

processes conducted by the State Service of 

Special Communication and Information 

Protection of Ukraine (Kyiv).  

Section 2 is dedicated to the definitions of the 

most important semigroups in Noncommutative 

Multivariate Cryptography such as formal and 

affine Cremona semigroups and their reduced 

version. 

In Section 3 we consider elements of theory 

of linguistic graphs. Section 4 is dedicated to the 

usage of linguistic graphs for the construction of 

stable subsemigroups and elements of formal 

Cremona groups of linear degree and prescribed 

density. 

We also presented the modification of 

quadratic m. d. s. s. based on reduced 

endomorphism of Fq[x1, x2,…, xn] of linear 

degree and density O(n
2
). In Section 5 we 

consider the concept of Unbalanced Oil and 

Vinegar signature systems. 

Section 6 is dedicated to the abstract schemes 

of protocol of multivariate non-commutative 

cryptography which allows correspondents to 

elaborate common collision multivariate 

endomorphism  of linear degree and polynomial 

density. The scheme uses two platforms  which 

are subsemigroups of formal Cremona 

semigroup En(Fq) of all endomorphisms of Fq[x1, 

x2,…, xn] and their homomorphic images. One of 

them can be a large stable subsemigroup S of 

degree 2, i.e subgroup  formed by quadratic 

endomorphisms. 

The second platform is a semigroup of 

Eulerian transformation, i. e. endomorphisms 

moving single variable xi into monomial term. 

Protocols based on subsemigroups of Eulerian 

transformations is considered in [8],[5].  Security 

of these algorithms rests on the complexity of 

word problem to decompose given multivariate 

map into generators of affine Cremona 

semigroup End(K[x1, x2,…,xn]) (see [9] for the 

first application of word problem in the case of 

group).   

In Section 7 we consider implementation of 

general scheme of the protocol of Section 6. We 

use stable and Eulerian platforms based on 

special linguisti graphs defined over 

commutative ring and its multiplicative group. 

This section presents the algorithm of safe 

transition of public key m.d. s. s. of section 4 on 

the private mode. 

Section 8 contains conclusive remarks and 

complexity estimates for m.d.s.s. of Sections 4 

and 7.   

Noteworthy that property of stability is very 

restrictive because the composition of two 

randomly chosen quadratic transformations has 

degree 4 with probability close to 1. The 

observation of known explicit constructions are 

given in [5], [6], [7], [10].  

Thus we have been working in the area of 

intersection of Multivariate and Non-

commutative cryptography which is an active  

area of cryptology where the cryptographic 

primitives and systems are based on algebraic 

structures like groups, semigroups and 

noncommutative rings (see [11]-[25]). It is 

important that this direction is well supported by 

Cryptanalytic research (see [26]-[29]).  

Semigroup based cryptography consists of 

general cryptographic schemes defined in terms 

of wide classes of semigroups and their 

implementations for chosen semigroup  families 

(so called platform semigroups.  

2 On Formal Cremona Group, 
Reduced Multivariate 
Transformation of Finite Vector 
Spaces and Eulerian 
Transformations 

2.1. Formal and affine Cremona 
groups heading 

Let K[x1, x2,… , xn] be commutive ring of all 

polynomials in variables x1, x2, … , xn  defined 

over a commutive ring K. Each endomorphism F 

ϵ En(K) is uniquely determined by its values on 

formal generators x1, i=1,2,…, n. Symbol  
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End(K[x1, x2,… , xn])=En(K) stands for 

semigroup of all endomorphisms of K[x1, x2,… , 

xn]. So we can identify F and the formal rule  

x1→f1(x1, x2,… , xn),   x2→f2(x1, x2,… , xn), …, 

xn→fn (x1, x2,… , xn)  where fiϵ K[x1, x2,… , xn].   

Element F naturally induces the transformation 

∆(F) of affine space K
n
 given by the following 

rule ∆(F):(α1, α2,…, αn)→( f1 (α1,  α2,…, αn), 

f2(α1, α2,…, αn),…, fn(α1, α2,…, αn)) for each (α1, 

α2,…, αn)ϵ K
n
. Luigi Cremona [30]   introduced  

∆(En(K))= CS(K
n
) which is currently called affine 

Cremona semigroup. A group of all invertible 

transformations of  CS(K
n
) with an inverse from 

CS(K
n
) is known as  affine Cremona group  

CG(K
n
) (shortly Cremona group, see for instance 

[31], [32]).  

We refer to infinite En(K) as formal affine 

Cremona semigroup. Density of the map F is the 

maximal number of monomial terms in fi, 

i=1,2,…,n.2. 1. 

 

2.2 . Reduced formal Cremona group 
 

Let us consider the case K=Fq.  Noteworthy 

that x
q
=x for each x ϵ Fq  and x

q-1
=1 for x≠0 and  

x
q-1

 =0  for x=0. So x
m
=x

 m mod q-1 
 where m  

modulo q-1 is different from 0. We define x
0
=1 

for x ≠ 0 and x
0
=0 for x=0. We introduce m’ as 

m mod q-1. 

For the monomial term ax1
m(1)

x2
m(2)

…xt
m(t)

 we 

introduce its reduced form as ax1
’m(1)

x2
’m(2)

…xt
’m(t)

.  

For f ϵ K[x1, x2,…, xm] we define ‘f as linear 

combination of reduced form  of monomial terms 

of f. 

Let us consider the totality ‘En(Fq) of  formal 

rules ‘F of kind xi→’fi(x1, x2,…, xn), i=1,2,…,n,  fi 

ϵ K[x1, x2,…, xn]. We define ‘F’G as natural 

superposition of ‘F and ‘G. We refer to ‘En(Fq) 

as reduced formal Cremona semigroup of rank n. 

The map χn sending xi →fi , i=1,2,…n to xi 

→f’i , i=1,2,…,n is a homomorphism of En(Fq) 

onto’En(Fq). Noteworthy that En(Fq) is an infinite 

semigroup but ‘En(Fq) is the finite one. We 

introduce ‘K[x1, x2,…,xn] as totality of ‘f such 

that f ϵ K[x1, x2,…,xn]. 

2.3. Eulerian semigroups 

Let K be a finite commutative ring with the 

unit such that multiplicative group K* of regular 

elements of this ring contains at least 2 

elemments. We take Cartesian power 
n
E(K) 

=(K*)
n
 and consider an Eulerian semigroup 

n
ES(K) of transformations of kind  

x1 → ϻ1x1 
a(1,1)

 x2 
a(1,2)

 … xm 
a(1,n)

 ,  

x2 → ϻ2x1 
a(2,1)

 x2 
a(2,2)

 … xm 
a(2,n)

 ,            (1) 

… 

xm →ϻnx1 
a(n,1)

 x2 
a(n,2)

 … xm 
a(n,n)

 , 

where a(i,j) are elements of arithmetic ring 

Zd, d=|K*|, ϻiϵK*. 

Let 
n
EG(K) stand for Eulerian group of 

invertible transformations from 
n
ES(K). Simple 

example of an element from 
n
EG(K) is a  written 

above transformation where a(i,j)=1 for i ≠ j or  

i=j=1, and a(j,j)=2 for j ≥2. It is easy to see that 

the group of monomial linear transformations  

Mn  is a subgroup of 
n
EG(K). So semigroup 

n
ES(K) is a highly noncommutative algebraic 

system.  Each element from 
n
ES(K) can be 

considered  as transformation of a free module 

K
n
.  

Let π and δ be two permutations on the set 

{1,2,..., n}. Let us consider a transformation of 

(K*)
n
, K=Zm or K= Fq and d =|K*|. We define 

transformation 
A
JG(π, δ), where A is triangular 

matrix with positive integer entries 0≤a(i,j)≤d, 

i≥d defined by the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1)

 xδ(2)
a(2,2)

  

… 

yπ(n)= ϻnxδ(1)
a(n,1)

 xδ(2)
a(n,2)

 …xδ(n)
a(n,n)

   
where (a(1,1),d)=1, (a(2,2),d)=1,…,( 

a(n,n),d)=1. 

We refer to 
 A

JG(π, δ) as Jordan - Gauss 

multiplicative transformation or simply JG 

element. It is an invertible element of 
 n

ES(K) 

with the inverse of kind 
 B

JG(δ, π) such that 

a(i,i)b(i,i)=1 (mod d). Notice that in the case K= 

Zm  straightforward process of computation the 

inverse of JG element is connected to the 

factorization problem of integer m. If n=1 and m 

is a product of two large primes p and q the 

complexity of the problem is used in RSA public 

key algorithm. The idea to use composition of 

JG elements or their generalisations with 

injective maps of  K
n
 into K

n
 was used in [33] 

(K=Zm) and [34] (K= Fq). 
We say that   is a tame Eulerian element 

over Zm or Fq.  if it is a composition of several 

Jordan Gauss multiplicative maps over 

commutative ring or field respectively. It is clear 

that  sends variable xi to a certain monomial 

term. The decomposition of  into product of 

Jordan Gauss  transformation allows us to find 

the solution of equations bx )( for x from 

n

mZ )( *
 or (F*q) 

m
. So tame Eulerian 

transformations over Zm or Fq.  are special 

elements of 
n
EG(Zm) or  

n
EG(Fq) respectively. 
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We refer to elements of  
n
ES(K) as 

multiplicative Cremona element. Assume that the 

order of K is a constant. As it follows from the 

definition the computation of the value of 

element from 
n
ES(K) on the given element  of K

n
   

is estimated by O(n
2
). The product of two 

multiplicative  Cremona elements can be 

computed in time O(n
4
). 

We are not discussing here the complexity of 

computing the inverse for general element gϵ
 

n
EG(K) on Turing machine or Quantum 

computer and the problem  of finding the inverse 

for computationally tame Eulerian elements. 

Remark 2.1. Let G be a subgroup of   
n
EG(K)  

generated by Jordan-Gauss elements  g1, g2, …, , 

gt. The word problem of finding the 

decomposition of gϵG into product of generator 

gi is a difficult one, i. e. polynomial algorithms  

to solve it with  Turing machine or Quantum 

Computer are unknown. If the word problem is 

solved and the inverses of gi is computable then 

the inverse of g is determined. Notice that if n=1,  

K=Zm, m=pq where p and q are large primes and 

G is generated by  g1=ϻg1
a
 the problem is 

unsolvable by Turing machine but it can be 

solved with the usage of Quantum Computer. 

3. Some Subsemigroup and 
Subgroups Defined via Linguistic 
Graphs over Commutative Rings 
and Groups. 

3.1. The case of rings. 

Let us assume that K=Fq and consider some 

graph based constructions of semigroups of 

formal Cremona semigroup ‘En(K). 

Constructions of this section are very similar to 

schemes of [5] which define some 

subsemigroups of  En(K). 
Element x1 → ‘fi(x1, x2, …, fn), i=1,2,…,n of 

‘En(K) will be identified with the tuple of 

elements (‘f1, ‘f2,…, ‘fn), ‘fi ϵ’K[x1, x2,…,xn] when 

it is convenient. 

Let us consider a totality 
s
BS’(K) of 

sequences of  kind u=(H0, G1, G2, H3,H4,G5, 

G6,…, Ht-1, Ht), t=4i, where Hkϵ ‘Es(K), Gj 

ϵ’Es((K).  We refer to 
s
BS’(K) as a totality of  free 

symbolic strings of rank s. We define a product 

of u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, 

H’l-1, Hl) as w=(‘H0, ‘G1, ‘G2, ‘H3, ‘H4, ‘G5, 

‘G6,…,’ Ht-1, H’0(Ht),G’1(Ht), G’2(Ht),  H’3(Ht), 

H’4(Ht),  G’5(Ht), G’6(Ht), …, H’l-1(Ht),  H’l(Ht)). 

Notice that the compositions of maps are 

computed in ‘Es(K). 

It is easy to see that this operation transforms 
s
BS(K) into the semigroup with the unity element 

(H0), where E0 is an identity transformation from 

‘Es(K). Elements of kind (H0, G1, G2, H3, H4) are  

generators of the semigroup. We refer to 
s
BS’(K) 

as semigroup of regular reduced strings  of 

dimension s.  

Let us assume that Ht  of written above u ϵ
 

s
BS’(K) is automorphism of K[x1, x2,…, xs]. So 

its inverse is well defined. Then we can consider 

a reverse linguistic string Rev(u)= (Ht-1(Ht
-1

), Gt-

2(Ht
-1

), Gt-3,(Ht
-1

), Ht-4(Ht
-1

),Ht-5
1
(Ht), …,G2(Ht

-1
),  

G1(Ht
-1

), H0(Ht
-1

), Ht
-1

) and refer to u as 

reversible string.  Let 
s
BR’(K) stand for the 

semigroup of reversible strings. 

Let K be a finite commutative ring. We refer 

to an incidence structure with a point set 

P=Ps,m=K
s+m

 and a line set L=Lr,m=K
r+m

 as 

linguistic incidence structure Im  if point   x=(x1, 

x2,…, xs, xs+1, xs+2, …,  xs+m) is incident to line 

y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m] if and only 

if the following relations hold 

a1xs+1+b1yr+1=f1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

a2xs+2+b2yr+2=f2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  

, yr, yr+1) 

… 

amxs+m+bmyr+m=fm ( x1, x2 ,… , xs, xs+1,…, xs+m, 

y1, y2, …  , yr, yr+1, …,  yr+m) 

where aj, and bj , j=1,2,,,,m are distinct from 

zero, and fj are multivariate polynomials with 

coefficients from K. Brackets and parenthesis 

allow us to distinguish points from lines. 

Noteworthy that polynomials fi can be 

changed for ‘fiϵ’K[x1, x2,…, xs]. 

The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  

x (line [y])  is defined as projection of an element 

(x) (respectively [y]) from a free module on its 

initial s (relatively r) coordinates. As it follows 

from the definition of linguistic incidence 

structure for each vertex of incidence graph there 

exists the unique neighbour of a chosen colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, 

x2 ,… , xs+m) and ρ([y])=(y1, y2, …  , yr) for 

[y]=[y1, y2, …  , yr+m] as the colour of the point 

and the colour of the line respectively. For each 

bϵK
r
 and p=(p1, p2 ,… , ps+m)  there is the unique 

neighbour of the point [l]=Nb(p)=N((p),b) with 

the colour b. Similarly for each cϵK
s
 and line 

l=[l1, l2 ,… , lr+m] there is the unique neighbour 

of the line (p)= Nc([l])=N([l],b) with the colour 

c. We refer to the operator of taking the 

neighbour of vertex in accordance with the  

chosen colour as sliding operator. On the sets P 
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and L of points and lines of linguistic graph we 

define jump operators  
1
J=

1
Jb(p)=J((p),b)=(b1, 

b2,…,bs, p1, p2 ,… , ps+m), where (b1, b2,…,bs)ϵK
s
  

and 
2
J=

2
Jb ([l])=J([l],b) =[b1, b2,…,br, l1, l2 ,… , 

lr+m], where (b1, b2,…,br)ϵK
r
. We refer to tuple (s, 

r, m) as type of the linguistic graph I=I(K).  

Notice that we can consider the same set of 

above mentioned equations with coefficients 

from K for variables xi and yi  from the extension 

K’ of K and define graph 
K’

I=
K
’I(K). Let s=r and 

K’=’K[x1, x2 ,…, xn], n=m+s. We consider 

induced subgraph in I’ of all vertices of 
K’

I with 

colours from ‘K[x1, x2,…, xs ] (tuples of ‘K[x1, 

x2,…, xs ]
 s
). 

We form the sequence of vertices (walk with 

jumps) of graph I’with the usage of string u from 

free linguistic semigroup 
s
BS’(K). 

We take the initial point (x)=(x1, x2,…, xs, 

xs+1, xs+2,…, xs+m) formed by the generic 

variables of K’ and consider a skating chain 

(x),J((x),H0)=(
1
x),N((

1
x),G1)=[

2
x],J([

2
x],G2)=

[
3
x],N([

3
x],H3)=(

4
x),J((

4
x),H4)=(

5
x),…, J([

t-

2
x],Gt-2)=[

t-1
x],N([

t-1
x],Ht-1)=(

t
x),J((

t
x),Ht)=(

t
x). 

Let (
t
x) be the tuple (Ht, F2, F3,…,Fn) where Fi 

ϵK[x1, x2,…, xn]. We define 
I
Ψ(u), I=I(K) as the 

map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to 

it as reduced chain transition of point variety. 

The statement written below follows from the 

definition of the map.    

Lemma 1. The map ψ=
I
ψ: 

s
BS’(K)→’En(K) is 

a homomorphism of semigroups,  ψ(
 s
BR’(K))is a 

group .   

We refer to 
I
ψ(

s
BS’(K))=

I
CT’(K) as a 

semigroup of reduced chain transitions of 

linguistic graph I(K) and to map ψ as reduced 

linguistic compression map. Notice that 

composition Δψ of homomorphism Δ and ψ maps 

finite semigroup into finite set of  elements of Δ(
 

I
CT’(K)). 

3.2 The case of Linguistic Graphs over 
Groups. 

Similarly to the case of commutative ring we 

introduce a linguistic graph I= Г(G) over abelian 

group G defined as a bipartite graph with a point 

set P=Ps,m=G
s+m

 and a line set L=Lr,m=G
r+m

 as a 

linguistic incidence structure Im  if point x=(x1, 

x2,…, xs, xs+1, xs+2, …, xs+m) is an incident to line  

y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m ] if and only 

if the following relations hold 

 

xs+1/1yr+1= a1 w1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

 

xs+2/2yr+2= a2w2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  

, yr, yr+1) 

… 

 xs+m/yr+m=amwm ( x1, x2 ,… , xs, xs+1,…, xs+m, 

y1, y2, …  , yr, yr+1, …,  yr+m) 

 where aj, j=1,2,…, m are elements of G and  

wi are words in characters xi  and yj from G. 

Brackets and parenthesis allow us to distinguish 

points from lines similarly to the case of 

linguistic graphs over commutative rings. 

We define colours ρ((p)) and ρ([l]) of the 

point (p) and the line [l] as the tuple of their   

first coordinates of kind a=(p1,  p2,  …, ps) or  

a=(l1, l2 , … , lr )  and introduce well defined 

operator N(v, a)  of computing the neighbour of 

vertex v of colour aϵG
s
or aϵG

r
. Similarly to the 

case of linguistic graph over commutative ring 

we define  jump operator J(p, a), aϵG
s
 on 

partition set  P and J(l,a), aϵG
r
  on partion set L 

by conditions J(p,a)=(a1,  a2, … as, p1+s,  p2+s,  …, 

ps+n) and ρ(J(l,a))=[a1,  a2, … ar, p1+r,  p2+r,  …, 

pr+m]. We also consider symplectic and linguistic 

homomorphisms of linguistic graphs over groups 

defined similarly to the case of commutative 

rings.  

Let us use various linguistic graphs with r=s 

over the multiplicative group G=K* and 

subsemigroup of monomial strings
 s
BS(K*) from 

s
BS(K), 0<s<n, 0<r<n, s=r 

 
for generation of 

pairs of mutually inverse elements of 
 n

EG(K). 

Let us consider the homomorphism of the 

semigroup 
s
BSr(K*) into Eulerian semigroup 

n
ES(K), n=s+m defined in terms of linguistic 

graph I=I(K*) over K* of type (s,r,m).  

Let  Na  be an operator of taking neighbour of 

given vertex with the colour a in the  graph I. Let 

us consider the commutative group K’=K*[x1, 

x2,…,xs, xs+1, …, xn]  of monomial terms of K[x1, 

x2,…,xs, xs+1, …, xn] with coefficients from K*  

and linguistic graphs I’ over group  K’  defined 

by the same equations with I but over the larger 

commutative group K’. We assume that Na  and 

N’a  are operators of taking neighbour of given 

vertex with the colour a in the graph I and I’ 

respectively.  Let us consider the string of kind 

v=(x1, x2, …, xs, xs+1, xs+2, …, xs+m) from K
s+m

 (or 

(K’) 
s+m

 ). We define jump operator 
s
J(v, a), 

a=(y1, y2, …, ys,)  moving  v  to (y1, y2, …, yt, ,  xs+1, 

xs+2, …, xs+m) from K
t+m

.  

We consider an infinite graph  I’(K’), n=m+s 

with partition sets P’=(K’)
m+s 

and L’=(K’)
m+r

. 

After that we take a string u=(H0, G1, G2, H3, H4, 

G5, G6,…, Ht-1, Ht) from 
s
BSr(K*) and the point 

(x)=(x1, x2,…, xn) formed by generic elements of 

K’. This data defines uniquely a skating chain  

__________________________________________________________________________________

83

Algorithms and methods of cyber attacks prevention and counteraction



(x),J((x),H0)=(
1
x),N((

1
x),G1)=[

2
x], 

J([
2
x],G2)=[

3
x],N([

3
x],H3)=(

4
x), 

J((
4
x),H4)=(

5
x),…, J([

t-2
x],Gt-2)=[

t-1
x],N([

t-1
x],Ht-

1)=(
t
x),J((

t
x),Ht)=(

t
x).  

Let (
t
x)be the tuple (Ht, F2, F3,…,Fn) where Fi 

ϵK[x1, x2,…, xn]. We define 
I
Ψ(u) as the map (x1, 

x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as 

chain transition of point variety. The statement 

written below follows from the definition of the 

map.    

Lemma 2. The map ψ=
I
ψ: 

s
BS(K*)→

 n
ES(K) 

is a homomorphism of semigroups.  

We refer to 
I
ψ(

s
BSr(K*))=

I
CT(K*) as a chain 

transitions semigroup of linguistic graph I(K*) 

over K* and to map ψ as multiplicative linguistic 

compression map. 

4. Stable Subsemigroups in ‘En(Fq)  of  
Arbitrary Degree and Elements of 
Unbounded Degree and Bounded 
Density 

4.1. Stable subsemihroup and graphs 

We say that subsemigroup of Sn of En(K) or 

‘En(Fq) is stable if maximal degree of elements 

from Sn is d, where d is some constant. 

Families of stable  subsemigroups of En(K) in 

terms of Double Schubert Graphs are constructed 

in [7].  In this section we introduce similar 

constructions for the case of En(Fq). 

Graph  DS(k,K) is defined  over commutative 

ring K as incidence structure defined as disjoint 

union of  partition sets PS=K
k(k+ 1)

  consisting of 

points which are tuples of kind x =(x1 , x2, … , xk, 

x11 , x12, … , xkk) and LS=K
k(k+1) 

consisting of 

lines which are tuples of kind y =[y1 ,y2, … ,yk, y11 

,y12, … ,ykk], where x is incident to y, if and only 

if xij - yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is 

convenient to assume that the indices of kind i,j 

are placed for tuples  of K
k(k+1) 

in the 

lexicographical order. 

The term Double Schubert Graph is chosen 

because points and lines of DS(k, Fq)  can be 

treated as subspaces of Fq
(2k+1) 

of dimensions k+1 

and k which form two largest Schubert cells. 

Recall that the largest Schubert cell is the largest 

orbit of group of unitriangular  matrices acting 

on the variety of subsets of given dimensions.  

We define the colour of point x =(x1 , x2, … , 

xk, x11 , x12, … , xkk )  from  PS as a tuple(x1, x2, … 

, xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 

,y12, … ,ykk] as a  tuple (y1, y2, … ,yk). For each 

vertex v  of DS(k, K), there is the unique 

neighbour  y=Na(v) of a given colour a=(a1,a2, … 

,ak). It means that graphs  DS(k, K) form a family 

of linguistic graphs.  

In the case of K=Fq  the subsemigroup 
k
Y’(d, 

K)  of  
k
BS’(K) consists of strings u=(H0, G1, G2, 

H3, H4, G5, G6,…, Ht-1, Ht) from  
s
BS’(K)  such 

that maximum of parameters deg(H0)+deg(G1), 

deg(G2)+deg(H3), deg(H4)+deg(G5),  

deg(G6)+deg(H7), …, deg(Gt-2)+deg(Ht-1),  

deg(Ht)=1 is equal to constant d, 1<d<(q-1)n. 

Theorem 1. Let I(K) be an incidence relation 

of Double Schubert graph DS(k, K) defined over 

finite field K. Then 
I
ψ(

k
Y’(d, K))=

k
U’(d,K) forms 

a family of stable semigroups of degree d in 

‘En(K).  

 The proof is based on the fact that the chain 

transition u from 
k
U’(d, K) moves xi,j into 

expression xi,j+T(u), where T(u) is a linear 

combination of products ‘fϵK[x1, x2,…, xk],  

gϵK[y1, y2,…, yk] where deg( f)+deg(g)≤d. 

New semigroup 
k
U(d, K) consists of 

transformations of a  free module K
t
, t=(k+1)k. If 

d=2 then 
k
U(d, K) contains semigroups of 

quadratic transformations defined in [6].  

Let J be subset of  Cartesian square of 

M={I,2,…,k}. We can identify its element (i,j) 

with the index ij of  Double Schubert Graph 

DS(k,K). 

Proposition 1. Each subset J of M
2
 defines 

symplectic homomorphism δJ of DS(k, K) onto 

linguistic graph DSJ (k,K). 

Corollary 1. Let I(J, K)) be an incidence 

relation of linguistic graph DSJ (k, K). Then 
I(J,K)

ψ(
k
Y’(d, K))=

k
U’J

 
(d,K) form a family of 

stable semigroups of degree d.  

Remark. If d<q-1 then groups
 k
U’J

 
(d,K) and

 

k
U’J

 
(d,K) (

 k
U

 
(d,K) and 

k
U’

 
(d,K)) are 

isomorphic. 

Recall that density of element f of K[x1, x2,…, 

xn]  (or  ‘K[x1, x2,…, xn], K=Fq) is its number 

den(f) of monomial terms. The density den(F)  of 

a map F: xi →fi(x1, x2,…, xn), i=1,2,…,n is a 

maximum of den(fi). .  

Lemma 3. Let u be the string (H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, Ht) from
 s
BS(K) ( or 

s
BS’(K), 

K=Fq) such that maximum of parameters 

deg(H0)+deg(G1), deg(G2)+deg(H3), 

deg(H4)+deg(G5), deg(G6)+deg(H7), …, deg(Gt-

2)+deg(Ht-1), deg(Ht) is a constant d. Then 

degree of 
I(J ,K)

ψ(u) is bounded by d. 

Lemma 4. Let u be the string (H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, Ht) from
 s

BS(K) (or 
s
BS’(K), 

K=Fq) such that maximum of parameters 

den(H0)den(G1), den(G2)den(H3), 
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den(H4)den(G5), den(G6)den(H7), …, den(Gt-

2)den(Ht-1),  den(Ht) is a constant d. Then density  

of  
I(J,K)

ψ(u) is bounded by d+1. 

Let u be a string from 
s
BS’(K), K=Fq  

satisfying Lemma 2 such that Ht is a composition 

DT of the map D  of kind xi→λixi+1
α(i)

 , i=1,2,…, 

s-1, xs = λsx1
 α(s)  

where (α(i), q-1)=1,  λi≠0 for 

i=1,2,…,s  and element Tϵ AGLs(K) with the  

density d.Then density of invertible element   
I(J,K)

ψ(u)=G is bounded by d and degree ≤ s(q-1).  

Let L={1. 2,…s}UJ be set of indices for x1, 

x2,…,xs,, xij, , (i,j)ϵ J and π be a permutation on L. 

We consider  an element H of ‘Em(Fq), m=|J|+s 

of kind xi→μixπ(i)
β(i)

, i=1,2,…s.  

Lemma 5. 

An element FJ=HG ϵ‘Em(Fq) has the  density 

bounded by d and the order at least s. 

It is easy to choose string u and 

transformations D and H such that degree of G is 

of kind γm(q-1) wher γ  is a constant 0<γ≤1. 

4.2. On the graph based m.d.s.s. of 
linear degree and density O(n2) 

Alice selects  a finite field and sequence of 

pairs (sm, Jm), sm>1, |Jm|<(sm)
2
 such that 

|sm+|Jm|=m  and generates defined above 

transformation FJ=(d1(x1, x2, …, xm), d2(x1, x2, …, 

xm),…, dm(x1, x2, …, xm)) ϵ‘Em(Fq). She selects a 

public rule of kind  P’=T1PT2 written in the form  

xi →Qi(x1, x2,…,xm), i=1,2,…,n, where n=n(m). 

Alice computes composition FJ and P’, i.e 

standard form of xi→Qi(d1(x1, x2, …, xm), d2(x1, 

x2, …, xm),…, dm(x1, x2, …, xm))=R1(x1, x2, … xm), 

i=1,2,…n.  in fact she computes Ri as elements of 

commutative ring  ‘Fq[x1, x2,…,xm] of reduced 

multivariate polynomials. 

Alice uses the nature of FJ=HG, where G is 

graph based transformations.  She computes   G
m-

1
  as 

I(J,K)
ψ(Rev(u)) and H

-1
 in an obvious way. 

The knowledge of decomposition G
-1

H
-1

 for  (FJ)
 

-1
  and decomposition T1PT2 of P’ allows Alice to 

create a signature efficiently.   

Remark 4.2. We implement this m. d. s. s. 

with sm=[m
1/2

]’ where [,]’ is the ceiling function. 

 

5. On Examples of Multivariate 
Digital Signatures Schemes. 

It is commonly admitted that Multivariate 

cryptography turned out to be more successful as 

an approach to build signature schemes primarily 

because multivariate schemes provide the 

shortest  signature among post-quantum 

algorithms. Such signatures use system of 

nonlinear polynomial equations 
1
p(x1,x2 , . . . , xn) = 

1
pi,j · xixj+

1
pi · xi+

 1
p0 

2
p(x1, x2, . . . , xn) = 

2
p i,j · xixj +

2
pi · xi +

2
p0 

   … 
m
p(x1,x2 , . . . , xn) = 

m
pi,j · xixj+

m
pi · xi+

 m
p0 

where 
k
p i,j,  

k
p i are elements of selected 

commutative ring K. 

The quadratic multivariate cryptography map  

consists of two bijective affine  transformations, 

S and T of dimensions n and m, and a quadratic 

element  P’ of kind  xi →
i
p of formal Cremona 

group, where 
i
p are written above elements of  

K[x1, x2,…,xn].We denote via Δ(P’)
 -1

(y) some 

reimage of y=Δ(P(x)). The triple Δ(S)
 -1

, Δ(P’)
 -1

,  

Δ(T)
 -1

 is the private key which is also known as 

the trapdoor.  

The public key is the composition S, P’ and T 

which is by assumption hard to invert without the 

knowledge of the trapdoor. Signatures are 

generated using the private key and are verified 

using the public key as follows.  

The message is hashed to a vector y via a 

known hash  function. The signature is Δ(T)
 -

1
 (Δ(P’)

 -1
)( Δ(S)

 -1
). The receiver of the signed 

document must have the public key P in 

posession. He computes the hash y  and checks 

that the signature  x fulfils Δ(P)(y)=x. 

EXAMPLE. Assume that we have two groups 

of variables  z1, z2, …, zr and z’1 , z’2, …, zn-r    

such  that  the substitution  x1=z1, x2=z2,…, xr 

=zr, xr+1=z’1, xr+2=z’2,…, xn =z’n-r  converts every 

single element 
i
p  to expression in  the  form  

Σγijkzjz’k+ Σλijkz’jz’k+ Σςijzj+ Σς’ijz’j+ϭi.  In this 

situation we have to  sign a given message y and 

the result is a valid signature x .The 

coefficients, γijk, λijk, ςij, ς’ij and ϭi must be chosen 

secretly. The vinegar variables z’i are chosen 

randomly (or pseudorandomly).The resulting 

linear equations system gets solved for the oil 

variables zi. 

Described above  unbalanced oil and vinegar 

(UOV) scheme is a modified version of the oil 

and vinegar scheme designed by J. Patarin. Both 

are digital signature protocols. They are 

algorithms of multivariate cryptography. The 

security of this signature scheme is based on 

an NP-hard mathematical problem. To create and 

validate signatures a minimal quadratic equation 

system must be solved. Solving m equations 

with n variables is NP-hard. While the problem 

is easy if m is either essentially larger or 
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essentially  smaller than n, importantly for 

cryptographic purposes, the problem is thought 

to be difficult in the average case 

when m and n are nearly equal, even when using 

a quantum computer. Multiple signature schemes 

have been devised based on multivariate 

equations with the goal of achieving quantum 

resistance. We assume that parameter n can be 

selected in a free way and parameters n and m 

are connected via linear equation αn+βm+b 

where α≠0,β≠0. So m=O(n). We take integer k 

which ≥ max(n, m), k=O(n) and commutative 

ring K[x1,x2,…,xn, xn+1, xn+2,…, xk] where xi, 

i=1,2,…,n are variables of public equations  
j
p(x1,x2 , . . . , xn), j=1,2, …,m and xn+1, xn+2,…,xk 

are formal variables. 

6. Multivariate Protocol for Stable 
Cremona Generators and 
Eulerian Systems with Growing 
Periods. 

6.1. The Case of Stable Generators. 
 

Recall that a monogenic semigroup or a 

cyclic semigroup S is a semigroup generated by a 

single element, which is called a generating 

element of semigroup S. Now we shall determine 

the general structure of monogenic semigroups. 

Let S = { a, a
2
, a

3
, …} be a monogenic 

semigroup with a generating element a. It is a 

well known  fact that all infinite monogenic 

semigroups S are isomorphic to (N; +). In the 

case of finite cardinality  of S, there exists natural 

numbers k and l such that k ≠l and a
k
 = a

l
. Let m 

be the smallest natural number such that a
m
 = 

a
m=x

  for some x > 0 and let r be the smallest 

natural number such that a
m
= a

jm+r
. Then we call 

m  the index of a denoted by m = ind(a) and r  

the period of a denoted by r = per(a). All  finite 

monogenic semigroups S are determined up to 

isomorphism by the height m and the period r of 

their generator.  

Let 
i
Z= {

 i
g1 ,  

i
g2, … ,  

i
gt} be a sequence of 

sets of elements from En(i)(K), where n(i)>1 is an 

increasing  sequence of positive integers. We say 

that  
i
Z  is  a noncommutative system of  stable 

Cremona generators of degree d and  rank t if 

(1) Δ(
 i
gk

i
gj) ≠  Δ(

 i
gj

i
gk)  for arbitrary k ≠ j. 

(2) i
SZ= <

i
g1,

 i
g2,  … , 

i
gt> are stable 

semigroups of  degree d. 

(3) For each j period of elements 
i
gj, 

i=1,2,…,t tends to infinity. 

Proposition 2.(see [3] and further 

references). For each commutative ring K, 

sequence n(i)=i ,i≥2 and each value of 

parameters d and t there is a noncommutative 

system of  stable Cremona  generators  of degree 

d and  rank t.  

We say that 
 i
Z is a regular  noncommutative 

system of stable Cremona generators if n(i)=i for 

each value of i.  

Let n(i), m(i), m(i) ≤ n(i) be two increasing 

sequences  of natural numbers and
 i

Z,  
i
Z

1
 are 

corresponding  stable systems of growing periods 

of degrees d and d' (d' ≤d) and rank t, t>1.   

We say that 
i
Z' ={

 i
g'1,

 i
g'2, … ,

 i
g't}  is a 

quotient of stable Cremona system 
i
Z if the rule 

φ(
i
gj)=

 i
g'j, j=1, 2,…, t defines computationally 

tame homomorphism of semigroup 
i
SZ onto 

 i
SZ

1 

, i. e. a homomorphism computable in time 

O(ni
α
) for some positive constant α. We refer to 

i
Z as stable cover of noncommutative system of 

stable Cremona  generators. 

Theorem 2 (see [6] and further references). 

For each finite commutative ring K  and natural 

numbers d, d>0 and t, t ≥ 2 there is an 

increasing sequence n(i)  of natural numbers and 

noncommutative system of stable Cremona 

generators 
 i
Z ={

 i
g 1, 

i
g2, … ,  

i
g t} of degree d 

and rank t which has a regular quotient 
 i
Z'. 

We say that stable Cremona system of 

elements of degree d has  enveloping family of 

stable subsemigroup EZ
i
(K) of degree d  if 

E(i)(K)>EZ
i
(K)>SZ

i
(K). 

Word tahoma stands here for the abbreviation 

of ‘’tame homomorphism’’. 

Noteworhy that Tahoma is a name of the 

mountain in North America and a popular shrift 

in a text processing.   

Let us assume that Alice selects a  

noncommutative  system Z(K) of stable Cremona 

generators  of degree d and rank t with quotient 

Z'(K) such that there is an enveloping family 

EZ(K) of Z(K) and enveloping family EZ
1
(K) of  

Z'(K). 

Alice chooses parameter i  and bijective 

affine transformation T , deg(T)=1 and T',  

deg(T')=1 acting on (K ) 
n(i)

 and (K ) 
m(i)

. She 

selects elements E and 
1
E from EZn(i)(K)   and  

EZ'm(i)(K). Alice takes  generators g1 ,  g2, …  , gt 

of SZ i (K) and corresponding images  g'1,   g'2  , 

…, g't in the SZ' i(K).  

So she forms aj = TEgjE
-1

T
-1

, j=1,2,…,t    and 

bj = T'E' g'j(E')
-1

(T')
 -1

, j=1,2,…,t  written in a 

standard form of En(i)(K) and Em(i)(K).  

Alice sends (aj, bj) and j=1,2,…,t to Bob. He 

takes alphabet {z1, z2,… , zt} and  selects word 
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w(z1, z2, …, zt), =zi(1)
α(1)

zi(2)
α (2)

 … z2i(l)
α (l)

, where 

α(j)>0, j=1,2, …, l, l >1, i(s)ϵ{1,2,…,t}, 

i(j)≠i(j+1) for j=1,2,...,t-1. 

Bob computes b=w(b1, b2,…,bt) and keeps it 

safely for himself. He forms a=w(a1, a2, … at) 

and sends this element of En(i)(K) to Alice. 

She uses the following restoration process to 

get w(b1, b2,…,bt). Alice computes E
-1

T
-1

aTE=c. 

She  uses tame  homomorphism φ corresponding 

to noncomutative  system Z and  its quotient Z
1
 

and computes φ(c)=c'. Secondly she computes 

b=w(b1, b2,…,bt) as  T'E'c
1
(E')

-1
(T')

-1
. 

Remark. Adversary has to decompose 

available multivariate map a=w(a1, a2, …, at ) 

from En(i) into word in given  generators a1, a2, 

…, at written in their standard form. So security 

rests on the word problem in semigroup En(i)(K) 

(or stable semigroup  <a1, a2, …, at>). 

Noteworthy that due to this algorithm  

correspondents Alice and Bob can safely 

elaborate  collision quadratic transformation of 

(K)
m(i)

 with the chosen dimension m(i). In the 

case of regular quotient m(i)=i.  

So correspondents have an algorithm to 

elaborate safely stable collision  map of selected 

degree d acting on free module K
l
 of an 

arbitrarily chosen  dimension.  

6.2. The Case of Toric Generators 

Let 
i
Z= { 

i
g1, 

i
g2, …,  

i
gt} be a set of elements 

ESn(i)(K),where n(i) is increasing sequence of 

positive integers. We say that 
i
Z is a system of 

Eulerian generators with growing periods  (SEG)  

and rank t if 

(1) For each j, 1≤j≤t  values per(Δ(
i
gj)) tends 

to ∞ when i grows. 

(2) 
k
gi 

k
gj ≠  

k
gj 

k
gi for i ≠ j. 

We refer to semigroups i
SZ=<

i
g1,

i
g2, …, 

i
gt>  

as toric subsemigroups of ESn(i)(K). We say that 

subsets  
i
Z

1
={

i
g

1
1,    

i
g

1
2 , …,

 i
g

1
t}  of ESm(i)  

,where m(i) is increasing sequence of positive 

integers form, a quotient of Eulerian system  
i
Z 

with growing periods  if  

(1) n(i) ≥ m(i) , 

(2) the rules  
i
φ (

i
gj)= 

i
g

1
j,  j=1, 2, … , t define 

computationally tame homomorphisms of 

semigroups 
i
SZ onto 

i
SZ

1
=< 

i
Z

1
>, i. e. 

homomorphisms computable in time O(n(i)
α
)  for 

some positive constant α .  

(3)
 i
Z

1
 is also Eulerian system with growing 

periods. 

We say that  
 i
Z

1
 is a regular Eulerian  quotient 

if n(i)=i for each value of i and n(i) is 

polynomial expressions in variable i of bounded 

degree. 

In the section 7.1 we constructively prove the 

following statement.   

Theorem 3. 

For each finite commutative ring K with unity 

and natural number   t ≥ 2 there is an increasing 

sequence n(i)  of natural numbers and  Eulerian 

system 
i
Z= { 

i
g1, 

i
g2, …,  

i
gt} of  rank t with  

growing periods (orders) which has a regular 

quotient 
i
Z

1
. 

Multivariate Eulerian Protocol. 

Let us assume that Alice selects a  

noncommutative  system Z(K) of  Eulerian 

generators  of  rank t with quotient Z'(K). 

Alice chooses parameter i  and bijective  

transformations Tϵ EGn(i)(K) and T'ϵ EGm(i)(K)  

acting on (K* ) 
n(i)

 and (K* ) 
m(i)

. Alice takes  

generators g1 ,  g2, …  , gt of SZ i (K) and 

corresponding images  g'1,   g'2  , …, g't in the SZ' 

i(K).  

So she forms aj = TgjET
-1

, j=1,2,…,t    and bj 

= T' g'j(T')
 -1

, j=1,2,…,t  written in a standard 

form of ESn(i)(K) and ESm(i)(K).  

Alice sends (aj, bj) and j=1,2,…,t to Bob. He 

takes alphabet {z1, z2,… , zt} and  selects word 

w(z1, z2, …, zt), =zi(1)
α(1)

zi(2)
α (2)

 … z2i(l)
α (l)

, where 

α(j)>0, j=1,2, …, l, l >1, i(s)ϵ{1,2,…,t}, 

i(j)≠i(j+1) for j=1,2,...,t-1. 

Bob computes b=w(b1, b2,…,bt) and keeps it 

safely for himself. He forms a=w(a1, a2, … at) 

and sends this element of ESn(i)(K) to Alice. 

She uses the following restoration process to 

get w(b1, b2,…,bt). Alice computes T
-1

aT=c. She  

uses tame  homomorphism φ corresponding to 

noncomutative  Eulerian system Z and  its 

quotient Z
1
 and computes φ(c)=c'. Secondly she 

computes b=w(b1, b2,…,bt) as  T'c
1
(T')

-1
. 

Tandem of Protocols.  

Let us consider  two protocols in a natural 

combination. 

Assume that Alice has data to set protocols 

6.1 and 6.2 in the case of regular quotients.   

She has system  CZ(K) of  stable Cremona 

generators of degree d and  rank t with regular 

quotient CZ'(K) such that there is  an  enveloping  

family EZ(K) of   CZ(K) and enveloping family 

EZ
1
(K) of  CZ'(K). 

Alice also has a noncommutative  system 

Z(K) of  Eulerian generators of rank t with 

regular quotient Z'(K), i. e system of Eulerian 

generators corresponding to the sequence n1=i , 

i=1,2,…,n. 

So Alice uses these data to execute algorithms 

6.1 and 6.2 together with Bob 
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For the parameter i selected by Alice 

correspondents elaborate collision elements bC 

and bE of these protocols. Notice the bE is an 

element of En(K). Thus correspondents have 

element bEbC  which has density O(n
d
) and a 

linear degree. 

 

7. Implementation of the Tandem of 
Protocols 

7.1. Family of linguistic graphs over 
multiplicative group of a 
commutative ring and graph based 
multivariate Eulerian protocol 

 

We define Eulerian Double Schubert Graph  

DS(k,K*) over multiplicative group K as 

incidence structure defined as disjoint union of  

partition sets PS=(K*)
k(k+ 1)

  consisting of points 

which are tuples of kind x =(x1 , x2, … , xk, x11 , 

x12, … , xkk ) and LS=(K*)
k(k+1) 

consisting of lines 

which are tuples of kind y =[y1 ,y2, … ,yk, y11 ,y12, 

… ,ykk], where x is incident to y, if and only if xij / 

yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is 

convenient to assume that the indices of kind i,j 

are placed for tuples  of (K*)
k(k+1) 

in the 

lexicographical order. 

We define the colour of point x =(x1 , x2, … , 

xk, x11 , x12, … , xkk )  from PS as tuple(x1 , x2, … , 

xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 

,y12, … ,ykk] as the tuple (y1 , y2, … ,yk). For each 

vertex v  of DS(k, K*), there is the unique 

neighbour  y=Na(v) of a given colour a=(a1,a2, … 

,ak). It means  that graphs  DS(k, K*) form a 

family of linguistic graphs.  

Let us consider the subsemigroup 
k
Y( K*)  of  

k
BS(K*) consisting of strings u=(H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, Ht). 

Let I*=I(K*) be an incidence relation of 

Eulerian Double Schubert graph DS(k, K*). Then 
I*

ψ(
k
Y(K*))=

k
U(K*) form a family of stable 

semigroups of ESn(K), n=k+k
2
.  

Let J be subset of the Cartesian square of 

M={I,2,…,k}. We can identify its element (i,j) 

with the index ij of  Eulerian Double Schubert 

Graph DS(k,K*). 

For each subset J of M
2
 deleting the 

coordinates of points and lines with coordinates 

indexed by elements M-J  defines symplectic 

homomorphism δJ of DS(k, K*) onto a linguistic 

quotient DSJ (k,K*). 

Let I*(J, K)) be an incidence relation of 

linguistic graph DSJ (k, K). Then homomorphism 

δJ induces tame homomorphism of semigroup
 

k
U(K*) onto its linguistic quotient  

I*(J,K)
ψ(

k
Y( 

K*))=
k
UJ

 
(K*).  

Let K be a commutative ring with a unity. For 

each pair (n, m), n≥ m an element T of ESn(K) 

with per(T)≥m can be constructed. Let us 

consider a  subset {1,2, …,m} of {1,2, …n} and 

transformation T such that  

T(xj)= xj+1
λ(j)

, j=1,2,…m-1, T(xm) = x1
λ(m)

,  

(λ(i)i, |K*|), i-1,2,…,m. Noteworthy that 

elements of kind  STS
-1

 where S  is a  monomial 

transformation from ESn(K) have periods >m. 

Let f : N→R be real function in a natural 

variable and  [ ,]’ stands for ceiling function, i.e 

[f(n)]’ is closest to f(n) parameter n’ such that 

n’≥n. 

Alice considers family of  
r(i)

Y(K)) where 

r(i)=[i
1/2

 ]’ , i=2,3,… So the point set of 
 
DS(r(i), 

K*)) is a variety (K*)
m
 of dimension m=[ i

1/2
 ]’ 

+([ i
1/2

 ]’ )
2
 which is at least [ i

1/2
 + i ]’. 

For each i she can select the strings u(1,i), 

u(2,i), …, u(t,i), t ≥ 2  with coordinates from 

ESr(i)(K) of kind u(k,i)=(
 k,i

H0, ,
k,i

G1, 
k,i

G2, 
k,i

H3, 
k,i

H4, 
k,i

G5, 
k,i

G6,…, 
k,i

Ht(k,i)-1, 
k,i

Ht(k,i)), k=1,2,…,t, 

t(k,i)≥4 such that 
k,i

Ht(k,i)
 j,i

Ht(j,i) ≠
ji
 Ht(j,i)

 k,i
Ht(k,i) for 

distinct  k and j and period of  
k,i

Ht(k,i) is >r(i)
 α

, 

0<α<1. 

The last conditions insure that for 
I
ψ(u(k,i))=a(k,i), k=1,2,…,t conditions 

a(k,i)a(j,i)≠a(j, i)a(k,i) hold and period of a(k,i), 

i=1,2,… tends to infinity for each k. So  elements  

a(l,i)ϵESr(i),  l=1,2,…,t, i=2,3,… form Eulerian 

system EZ of generators of growing periods 

corresponding to the sequence r(i). Alice can 

take DS(r(i), K*) and subset J(i) which defines 

an incidence system I(J, K)) such that |J(i)|=i-

r(i). So the point set of I(J(i), K) is K
i
. 

Symplectic homomorphism of DS(r(i), K*)) 

onto I(J(i),K*) induces homomorphism ϕ*(i,J(i)) 

of semigroup 
r(i)

U(K*) onto 
i
UJ(i)(K). It is easy to 

see that ϕ*(i,J(i))(a(k,i))=a’(k,i) forms the 

regular quotient EZ’ of the system EZ. 

So correspondents can use toric tahoma 

protocol with the System EZ ofEulerian 

generators with growing periods and its regular 

quotient  EZ’. 

 

__________________________________________________________________________________

88

On Multivariate Algorithms of Digital Signatures Based on Maps of Unbounded Degree Acting ...



7.2. Example of a family of 
linguistic graphs over commutative 
ring and corresponding protocol 

In the second protocol we use already defined  

symbol [ , ]’ and already defined graphs DS(k, 

K). 

Alice considers family of  
r’(n)

Y(d, K)),  where 

r’(i)=[i
1/2

 ]’ +γ, where γ is an integer constant.  

So the point set 
 r(i)

DS(d, K)) is a free module of 

dimension [ i
1/2

 ]’ +([ i
1/2

 ]’ )
2
 which is at least [ 

i
1/2

 + i ]’. 

For each i she can select the strings 

u(1)=u(1,i), u(2,i), …, u(t,i), t ≥ 2  of kind 

u(k,i)=(
 k,i

H0, ,
k,i

G1, 
k,i

G2, 
k,i

H3, 
k,i

H4, 
k,i

G5, 
k,i

G6,…, 
k,i

Ht(k,i)-1, 
k,i

Ht(k,i)), k=1,2,…,t from 
k
U(d, K) such 

that Δ(
k,i

Ht(k,i) 
 j,i

Ht (j,i))≠
ji
 Δ(

j,i
Ht (j,i)

 k,i
Ht(k,i)) for 

distinct  k and j and period of  
k,i

Ht(k,i) from 

AGLr’(i)(K)> r’(i)
 α
, 0<α<1. 

The last condition insures that for 
I
ψ(u(k,i))=b(k,i), k=1,2,…,t conditions 

b(k,i)b(j,i)≠b(j, i)b(k,i) hold if j ≠k and  period of 

b(k,i), i=1,2,… tends to infinity for each k. 

So endomorphisms b(l,i)ϵEr’(i),  l=1,2,…,t, 

i=2,3,… form stable  

Noncommutative Cremona system CZ of 

degree d corresponding to the sequence r’(i). 

Semigroups 
r’(‘i)

U(d, K) form enveloping family 

of Z. Alice can take 
r(i)

DS(d, K)) and subset J’(i) 

which defines an incidence system I(J’, K)) such 

that |J’(i)|=i-r’(i). So the point set of I(J’(i), K) is 

K
i
. 

Symplectic homomorphism of 
r’(i)

DS(d, K)) 

onto I(J’(i),K) induces homomorphism ϕ(i,J’(i)) 

of semigroup 
r’(i)

U(d, K) onto 
i
UJ(i)(d,K). It is easy 

to see that ϕ(i,J(i))(b(k,i))=b’(k,i) form the 

quotient EZ’ of the system EZ with enveloping 

family
 i
UJ’(i)(d,K). 

 

7.3. The combination and its usage 
for the privatization of public rules 

 

Correspondents select parameter i. They use 

both protocols to elaborate collision map 

HϵESi(K), K=Fq of linear degree s(i) and stable 

transformation G from Ei(K). They compute 

G’=HG of linear degree and density O(i
d
).  

Assume that d=2.  One of correspondents 

(Alice)  consider the public rule F=(f1, f2,…, fm)  

of m.d.s.s. of Section 4 with n variables and m 

equations.  Parameter   i is selected  as maximum 

of n  and m.. If m<n we consider transformation 

F’=(f1, f2,…, fm, xm+1, xm+2,…, xi) where xj are 

generic variables of K[x1, x2,…, xi] and sends 

G’+F’ to Bob. He restores F’ and they use the 

m.d.s.s. scheme of Section 4. 

8. Complexity Aspects 

Let us assume that correspondents use 

m.d.s.s. based on the composition of a quadratic 

multivariate public rule P’ with m=O(n) 

equations in  n variables over finite field Fq with 

the endomorphism  H from En(Fq).  Bob 

substitutes received signature string in the 

G=HP’ given in the standard form of each 

equation in time O(n
3
). So the check of the 

signature takes him O(n
4
) time. 

Let us compute the time required for the 

generation of  H. 

Notice that choice of string with bounded 

length costs O(n
1/2

). The computation of the 

value of linguistic homomorphism takes time 

evaluated by  O(n
2+1/2

). Each coordinate of H has 

O(1) monomial terms of degree  bounded by 

qn
1/2

. The generation of D of density 1 and 

degree q takes time O(n). The computation of D 

and H takes O(n
1+1/2

).  Each coordinate of DH 

has density O(1)  and degree qn. The 

computation of each coordinate of (DH)P’  takes 

O(n
3
). So the complexity of computation of new 

public rule is O(n
4
). 

The knowledge of the inverse string  allows 

to compute inverse of H in time O(n
2+1/2

). The 

inverse of D is computable for O(n). So Alice 

can find appropriate signature for the time 

required for the computation of reimage of P’.  

Finally we evaluate the complexity of 

execution of each protocol. 

In the case of our stable platform of degree 2 

Bob has a finite set of stable quadratic 

tranformations. The computation of composition 

of several generators in stable case can be 

evaluated via computation of two generators. It 

takes O(n
7
) elementary operations. It means that  

the total time for the execution of the protocol by 

Bob is O(n
7
). It is easy to see that Alice can 

generate data for the first stage essentially faster 

than O(n
7
). 

For the computation of the collision quadratic 

endomorphism she need to compute the 

composition of linear and quadratic elements in 

two different orders.  It can be done in time 

O(n
5
). Additionally Alice has to compute the 

product of two stable quadratic elements.  We 

already noticed that it required O(n
7
) elementary 

steps. So O(n
7
)  is the appropriate upper bound 
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for time execution of the protocol by each 

correspondent. 

Similarly we will see that in the case of 

Eulerian platform  the protocol can be executed 

in time  O(n
4
)  which is necessary to compute the 

product of two Eulerian transformations.  

Correspondents has to multiply Eulerian element 

with quadratic transformation.  It can be done in 

time O(n
4
). 

Conclusions 

In paper [3] the method of conversion of 

multivariate digital signature scheme based on 

quadratic public map P’ was proposed. So 

instead P’ the combination of HP’ with bijective 

element H ϵ En(K) of linear degree l(n) and  

density O(1) is used. We notice that in the  case 

K=Fq we can work with reduced polynomials 

which are linear combinations of monomial 

terms x1
a(1)

x2
a(2)

…xn
a(n)

 where a(i) , i=1,2,…, n are 

a residue modulo q-1. We modify the technique 

[4] of construction H via walk on special graphs 

defined by equations (‘’linguistic graphs over 

field Fq’’) and construct bijective map ‘H from 

the reduced Cremona semigroup. 

New scheme of usage ‘HP’ has better 

estimates for time of execution presented in 

Section 7. Attacks presented in [1], [2] can not 

be used against new schemes. 

The main objective of the paper is the 

algorithm of safe transition of multivariate digital 

signature scheme of linear degree onto private El 

Gamal type mode. 

This algorithm uses a combination of two  

protocols of Multivariate Noncommutative 

Cryptography with platform formed by a family 

of quadratic stable subsemigroups of formal 

Cremona semigroup and platform  formed by a 

family of semigroups of Eulerian 

transformations. The second platform is defined 

via families of linguistic graphs over groups 

which were introduced in this paper. 

The combination of protocols allows 

correspondents to elaborate  family  Gn of 

elements of ’En(Fq) , n=2,3,…of linear degree 

and density O(n
2
). One correspondent selects 

combination Fn=HP’  and sends Gn+Fn to 

his/her partner. 

Breaking the word problem is currently 

unsolvable post quantum problem, so the 

remaining option for adversary is to intercept 

many pairs of kind hash vector/corresponding 

signature  and try to approximate Fn. The 

approximation task for the non bijective map of 

unbounded degree and density O(n
2
) is 

unfeasible one. This section should summarize 

the significance of this article for the 

development of the scientific field. 
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