1,152 research outputs found

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Two-Dimensional Z-Complementary Array Quads with Low Column Sequence PMEPRs

    Full text link
    In this paper, we first propose a new design strategy of 2D ZZ-complementary array quads (2D-ZCAQs) with feasible array sizes. A 2D-ZCAQ consists of four distinct unimodular arrays satisfying zero 2D auto-correlation sums for non-trivial 2D time-shifts within certain zone. Then, we obtain the upper bounds on the column sequence peak-to-mean envelope power ratio (PMEPR) of the constructed 2D-ZCAQs by using specific auto-correlation properties of some seed sequences. The constructed 2D-ZCAQs with bounded column sequence PMEPR can be used as a potential alternative to 2D Golay complementary array sets for practical applicationsComment: This work has been presented in 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwa

    Direct Construction of Optimal Z-Complementary Code Sets for all Possible Even Length by Using Pseudo-Boolean Functions

    Get PDF
    Z-complementary code set (ZCCS) are well known to be used in multicarrier code-division multiple access (MCCDMA) system to provide a interference free environment. Based on the existing literature, the direct construction of optimal ZCCSs are limited to its length. In this paper, we are interested in constructing optimal ZCCSs of all possible even lengths using Pseudo-Boolean functions. The maximum column sequence peakto-man envelop power ratio (PMEPR) of the proposed ZCCSs is upper-bounded by two, which may give an extra benefit in managing PMEPR in an ZCCS based MC-CDMA system, as well as the ability to handle a large number of users

    A Direct Construction of 2D-CCC with Arbitrary Array Size and Flexible Set Size Using Multivariable Function

    Full text link
    Recently, two-dimensional (2D) array codes have been found to have applications in wireless communication.In this paper, we propose direct construction of 2D complete complementary codes (2D-CCCs) with arbitrary array size and flexible set size using multivariable functions (MVF). The Peak-to-mean envelope power ratio (PMEPR) properties of row and column sequences of the constructed 2D-CCC arrays are investigated. The proposed construction generalizes many of the existing state-of-the-art such as Golay complementary pair (GCP), one-dimensional (1D)-CCC, 2D Golay complementary array set (2D-GCAS), and 2D-CCC with better parameters compared to the existing work
    • …
    corecore