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Direct Construction of Optimal Z-Complementary
Code Sets with Even Lengths by Using Generalized

Boolean Functions
Gobinda Ghosh, Sudhan Majhi, Palash Sarkar and Ashish Kumar Upadhaya

Abstract—The Z-complementary code set (ZCCS) is well-
known for being used in multicarrier code-division multiple
access (MC-CDMA) systems to provide interference-free com-
munication in a quasi-synchronous environment. Based on the
existing literature, the direct constructions of optimal ZCCSs are
limited to their lengths. This letter proposes a direct construction
of optimal ZCCSs for all possible even lengths using generalized
Boolean functions. The maximum column sequence peak-to-mean
envelope power ratio (PMEPR) of the proposed ZCCSs is upper-
bounded by two which can benefit in managing PMEPR over a
ZCCS-based MC-CDMA system.

Index Terms—MC-CDMA, GBF, ZCCS, ZCZ, PMEPR.

I. INTRODUCTION

MULTICARRIER code-division multiple access
(MC-CDMA) is a multiple access scheme used

in orthogonal frequency division multiplexing (OFDM)
based telecommunication systems, allowing the system to
support multiple users at the same time and over the same
frequency band. The traditional orthogonal code such as
Walsh-Hadamard, gold-codes, and m-sequences suffer from
high peak-to-mean envelope power ratio (PMEPR) problem
as well as multipath interference (MPI) and multiple-access
interference over asynchronous environment for MC-CDMA
[1], [2]. The complete complementary code (CCC) [3] has
perfect cross and auto-correlation characteristics, which
allows for simultaneous interference-free transmission
in MC-CDMA over the asynchronous system. A major
disadvantage of CCC is that the number of supported users
for MC-CDMA is limited by the number of row sequences in
each complementary matrix, i.e., number of subcarriers. The
set size of the Z-complementary code set (ZCCS) system is
much bigger than that of CCC [4]. It enables more number of
users to be supported by a ZCCS-based MC-CDMA system
in a quasi-synchronous environment with low computational
complexity, unlike a CCC-based MC-CDMA system.
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In [4]–[9] generalized Boolean function (GBF) based
construction of complementary set has been discussed. The
GBFs based construction of CCCs [10] were extended to
optimal ZCCSs in [4],[5]. However, GBFs based construction
of optimal ZCCS has a limitation on the sequence lengths
which is in the form of power-of-two [4], [5], [8], [11].
Recently, [12]–[14] proposed a direct construction of
optimal ZCCSs, which can provide non-power-of-two length
sequences but are limited to a few numbers. Besides direct
constructions, many indirect constructions of ZCCS can be
found in [15]–[18] which are dependent on some kernel at
its initial stages. The limitation on the lengths of optimal
ZCCS through direct constructions in the existing literature
motivates us to search for new GBFs to provide all possible
even lengths.
In search of new ZCCS, in this article, we propose a direct
construction of optimal ZCCS for all possible even lengths,
using GBFs. It has been shown that, the proposed construction
is able to maintain a minimum column sequence PMEPR of
2. The ZCCS reported in [12] appears as a special case of
proposed construction.

II. PRELIMINARY

This section provides a few fundamental concepts and
lemmas that will be used throughout the proposed con-
struction. Let x1 = [x1,0, x1,1, . . . , x1,N−1] and x2 =
[x2,0, x2,1, . . . , x2,N−1] be two sequences whose components
are complex numbers. A function is defined for integer value
of τ as

Θ(x1, x2)(τ) =


∑N−1−τ

i=0 x1,i+τx
∗
2,i, 0 ≤ τ < N,∑N+τ−1

i=0 x1,ix
∗
2,i−τ , −N < τ < 0,

0, otherwise,
(1)

where ∗ denotes the complex conjugate. When x1 = x2,
Θ(x1, x2)(τ) = Ax1(τ). The functions Θ and A are known as
aperiodic cross-correlation function (ACCF) of x1 and x2 and
aperiodic auto-correlation function (AACF) of x1 respectively.
Let B = {B0,B1, . . . ,BM−1} be a collection of
M matrices each of dimensions K × N , i.e., Bδ =[
bδ
0,b

δ
1, . . . ,b

δ
K−1

]T
K×N

where T denotes a matrix’s trans-
pose and each bδ

i is a complex-valued sequence of length
N , i.e., bδ

i = (bδi,0, b
δ
i,1, . . . , b

δ
i,N−1). Suppose Bδ1 ,Bδ2 ∈ B,

where 0 ≤ δ1, δ2 ≤ M − 1, we define ACCF between Bδ1
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and Bδ2 as, Θ(Bδ1 ,Bδ2)(τ) =

K−1∑
i=0

Θ(bδ1
i ,b

δ2
i )(τ). When

δ1 = δ2, we denote ACCF by AACF.
Definition 1: Code set B is called a ZCCS ([4]) if

Θ(Bδ1 ,Bδ2)(τ) =


KN, τ = 0, δ1 = δ2,

0, 0 < |τ | < Z, δ1 = δ2,

0, |τ | < Z, δ1 ̸= δ2,

(2)

where Z denotes zero correlation zone (ZCZ) width. With the
parameter K,N,M, and Z, we denote the set of matrices B
as (M,Z)−ZCCSN

K which is called optimal for M = K⌊N
Z ⌋

and non-optimal for M < K⌊N
Z ⌋ [19]. When K = M and

Z = N , we denote B by (K,K,N)-CCC.

A. Generalized Boolean Functions (GBFs)
A degree i monomial is a product of i distinct variables from

the set {y0, . . . , ym−1}. GBFs are functions g:{0, 1}m→ Zq

that are represented as a linear combination of monomials
formed by the variables {y0, . . . , ym−1} where each y′is is
a Boolean variable and coefficient of each monomial is drawn
from Zq where q denotes a positive integer. The order of g
determines by the greatest degree monomial with a non-zero
coefficient contained in the expression of g. As an example
4y2y1+ y0 is a GBF of three variables y0, y1, and y2 of order
2. A graph of second-order GBF g is denoted by G(g) [7].
Let ψ(g) denote a complex-valued sequence corresponding
to a GBF g and it is defined as ψ(g) = (ωg0

q , . . . , ω
g2m−1
q ),

where ωq denotes exp
(
2π

√
−1/q

)
, gr = g(r0, . . . , rm−1),

and (r0, . . . , rm−1) is the binary vector representation of

integer r (r =

m−1∑
α=0

rα2
α). Let C = (f1, f2, . . . , fM ) be an

ordered set of M GBFs. The code ψ(C) corresponding to C
can be expressed as ψ(C) = [ψ(f1), ψ(f2), . . . , ψ(fM )]T .

Lemma 1: (Construction of CCC [6])
Let q ≥ 2 be an even positive integer and g : Zm

2 →
Zq be a second-order GBF and g̃ be the reversal of
g, i.e, g̃(y0, . . . , ym−1) = g(1 − y0, . . . , 1 − ym−1). Let
{β0, . . . , βn−1}⊂{0, 1, . . . ,m−1} and the graph G(g) contain
vertices denoted as yβ0 , . . . , yβn−1 such that, after executing
a deletion operation on those vertices, the resultant graph
reduces to a path. Also let the edges in the path have identical
weight of q

2 . Also let the binary representation of the integer
r be r = (r0, . . . , rn−1). Then the codes are defined as

Gr =
{
g+

q

2

(
(v + r) · y+vnyγ

)
: v ∈ {0, 1}n, vn ∈ {0, 1}

}
,

Ḡr =
{
g̃+

q

2

(
(v + r) · ȳ+v̄nyγ

)
: v ∈ {0, 1}n, vn ∈ {0, 1}

}
,

(3)

where γ specifies the label for either of the end vertices in
the path, y = (yβ0 , . . . , yβn−1), ȳ = (1− yβ0 , . . . , 1− yβn−1),
v = (v0, . . . , vn−1). Then {Ψ(Gr),Ψ

∗(Ḡr) : 0 ≤ r < 2n}
forms (2n+1, 2n+1, 2m)-CCC, over Zq , where Ψ∗(·) denotes
the complex conjugate of Ψ(·).

Lemma 2: ( [20]) Let t and t′ be two non-negative integers,
where 0 ≤ t ̸= t′ < pi, pi is a prime number. Then
pi−1∑
j=0

ω(t−t′)j
pi

= 0.

Let l be a positive integer and p1, p2, . . . , pl be prime numbers
and c = (c1, c2, . . . , cl) where 0 ≤ ci ≤ pi − 1 and 1 ≤ i ≤ l.
Let g :{0, 1}m→ Zq be a second-order GBF of m variables
and let Y = (y0, . . . , yb−1) ∈ Zb

2 where b = m +
∑l

i=1 si.
The following GBFs Mc : Zb

2 → Za and Nc : Zb
2 → Za are

defined with the help of g as

Mc(Y)=
a

q
g(y0, . . . , ym−1)+

l∑
i=1

ci
a

pi

si−1∑
k=0

2kym+
∑i−1

j=0 sj+k,

Nc(Y)=
a

q
g̃(y0, . . . , ym−1)+

l∑
i=1

ci
a

pi

si−1∑
k=0

2kym+
∑i−1

j=0 sj+k,

(4)

where a = l.c.m(q, p1, p2, . . . , pl) and si ∈ Z+ which refers
to the collection of all positive integers and s0 = 0. From
(4), it is clear that both Mc(Y) and Nc(Y) are GBFs of
b variables over Za. We chose si in such a way that pi ≤
2si ∀i∈{1, 2, . . . , l}. Let h : {0,1}n+1→Zq be a function.
For simplicity, we denote gV,r,h(y0, . . . , ym−1) by gV,r,h and
sV,r,h(y0, . . . , ym−1) by sV,r,h and define the functions as

gV,r,h=g(y0, . . . , ym−1) + h(V) +
q

2
((v + r) · y+ vnyγ),

sV,r,h=g̃(y0, . . . , ym−1) + h(V) +
q

2
((v + r) · ȳ+ v̄nyγ),

(5)

where V=(v, vn)∈{0, 1}n+1. We also denote MV,r,c,h(Y)
by MV,r,c,h and NV,r,c,h(Y) by NV,r,c,h and define the
functions as

MV,r,c,h=Mc(Y)+
a

q

(
h(V) +

q

2
((v + r) · y+vnyγ)

)
,

NV,r,c,h=Nc(Y)+
a

q

(
h(V) +

q

2
((v + r) · ȳ+v̄nyγ)

)
.

(6)

As per our assumption, for any choice of V, h, and r,
the functions gV,r,h and sV,r,h are Zq-valued GBFs of m
variables and MV,r,c,h and NV,r,c,h are Za-valued GBFs of
b variables. We define the complex-valued sequence as

Ψ(MV,r,c,h) = (ω
MV,r,c,h

0
a , . . . , ω

MV,r,c,h

2b−1
a ) (7)

where MV,r,c,h
k =MV,r,c,h(k0, . . . , kb−1), 0≤ k < 2b and the

binary representation of the integer k is (k0, . . . , kb−1). The
kth element of Ψ(MV,r,c,h) is given by

w
MV,r,c,h

k
a = ω

gV,r,h
j0

q ωc1(j1)
p1

ωc2(j2)
p2

. . . ωcl(jl)
pl

, (8)

where 0 ≤ j0 ≤ 2m − 1, ω
gV,r,h
j0

q represents the j0th element
of the sequence corresponding to the GBF gV,r,h, 0 ≤ ji ≤
2si − 1 ∀i ∈ {1, 2, . . . , l} and

k = j0 + j12
m + j22

m+s1 + . . .+ jl2
m+s1+...+sl−1 .

Now, we truncate the sequence Ψ(MV,r,c,h) by removing all

the kth elements of the form w
gV,r,h
j0

q w
c1(j1)
p1 w

c2(j2)
p2 . . .w

cl(jl)
pl if

at least one of ji ≥ pi where 1 ≤ i ≤ l. Therefore, after the
truncation, we left with a sequence ΨTrun(M

V,r,c,h) where,
the k′th element of ΨTrun(M

V,r,c,h) is of the form

w
gV,r,h

j′0
q w

c1(j
′
1)

p1 w
c2(j

′
2)

p2 . . .w
cl(j

′
l)

pl
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where 0 ≤ k′ < 2m
∏l

i=1 pi, 0≤ j′0≤2m−1, 0≤ j′i ≤pi−1,
∀i ∈ {1, 2, . . . , l} and

k′ = j′0 + j′12
m + j′2p12

m + . . .+ j′lp1p2 . . . pl−12
m.

We partition the length of ΨTrun(M
V,r,c,h) by

∏l
i=1 pi

subsequences where each subsequences has length 2m. The
jth subsequence of ΨTrun(M

V,r,c,h) and ΨTrun(N
V,r,c,h)

are given by

Ψj
Trun(M

V,r,c,h)=

(
l∏

i=1

w
ci(j

′
i)

pi

)(
w

gV,r,d,h
0

q , . . . , w
gV,r,d,h
2m−1

q

)
,

Ψj
Trun(N

V,r,c,h)=

(
l∏

i=1

w
ci(j

′
i)

pi

)(
w

sV,r,d,h
0

q , . . . , w
sV,r,d,h
2m−1

q

)
,

(9)

where j = j′1 + j′2p1 + . . . + j′lp1 . . . pl−1. Let S =
{MV1,r,c,h, . . . ,MV2n+1 ,r,c,h} be an ordered set of 2n+1

GBFs where Vi ∈ {0, 1}n+1. We define ΨTrun(S) =
[ΨTrun(M

V1,r,c,h),. . . ,ΨTrun(M
V2n+1 ,r,c,h)]T .

III. PROPOSED CONSTRUCTION OF ZCCS

Theorem 1: Let g : Zm
2 → Zq be a GBF as defined in

Lemma 1, such that after deleting the vertices yβ0
, . . . , yβn−1

from the graph of g the resultant graph reduces to a path where
n ≤ m. Let yγ be either of the end vertices in the path. Let
si ∈ Z+ be such that 2 ≤ pi ≤ 2si ,∀i where, pi’s are primes
and 1 ≤ i ≤ l. Let c = (c1, c2, . . . , cl) where, 0 ≤ ci < pi
and a= l.c.m(q, p1, . . . , pl). We define

Mc(Y)=
a

q
g(y0, . . . , ym−1)+

l∑
i=1

ci
a

pi

si−1∑
k=0

2kym+
∑i−1

j=0 sj+k,

Nc(Y)=
a

q
g̃(y0, . . . , ym−1)+

l∑
i=1

ci
a

pi

si−1∑
k=0

2kym+
∑i−1

j=0 sj+k.

(10)

Let h : {0, 1}n+1→Zq be a function such that h∈{λ, q2 + λ}
where λ ∈ Zq . Let v∈{0, 1}n, vn∈{0, 1} and V=(v, vn). We
define,

Ωc
r=
{
Mc(Y) +

a

q

(
h(V)+

q

2

(
(v + r) · y+vnyγ

))
: v ∈ {0, 1}n, vn ∈ {0, 1}

}
,

Λc
r=
{
Nc(Y) +

a

q

(
h(V)+

q

2

(
(v + r) · ȳ+v̄nyγ

))
: v ∈ {0, 1}n, vn ∈ {0, 1}

}
.

(11)

Then the code set
S =

{
ψTrun(Ω

c
r), ψ

∗
Trun(Λ

c
r) :0≤r< 2n, 0 ≤ ci ≤ pi−1

}
,

forms (
∏l

i=1 pi2
n+1, 2m)− ZCCS

2m
∏l

i=1 pi

2n+1 over Za.
Proof: From (9) it can be observed that the jth

subsequence of ΨTrun(M
V,r,c,h) can be expressed as

ω
c1(j

′
1)

p1 ω
c2(j

′
2)

p2 . . . ω
cl(j

′
l)

pl Ψ(gV,r,h). From (9), (11), Lemma

1, and Lemma 2, the ACCF between ΨTrun(Ω
c
r) and

ΨTrun(Ω
c′

r′) for τ = 0 and can be derived as

Θ(ΨTrun(Ω
c
r),ΨTrun(Ω

c′

r′))(0)

=
∑
V

Θ(ΨTrun(M
V,r,c,h),ΨTrun(M

V,r′,c′,h))(0)

=
∑
V

Θ(Ψ(gV,r,h),Ψ(gV,r′,h))(0)

l∏
i=1

(
pi−1∑
α=0

ω
(ci−c′i)(α)
pi

)

= Θ(Ψ(Gr),Ψ(Gr′))(0)

l∏
i=1

(
pi−1∑
α=0

ω
(ci−c′i)(α)
pi

)

=


p1p2 . . . pl2

m+n+1, r = r′, c = c′,

0, r = r′, c ̸= c′,

0, r ̸= r′, c = c′,

0, r ̸= r′, c ̸= c′.

(12)

Now, using (9), (11), and Lemma 1, the ACCF between
ΨTrun(Ω

c
r) and ΨTrun(Ω

c
′

r′ ) for 0 < |τ | < 2m can be derived
as,

Θ(ΨTrun(Ω
c
r),ΨTrun(Ω

c
′

r′
))(τ)

= Θ(Ψ(Gr),Ψ(Gr′ ))(τ)

[
l∏

i=1

(
pi−1∑
α=0

ω
(ci−c′i)(α)
pi

)]

+Θ(Ψ(Gr),Ψ(Gr′ ))(τ − 2m)

[
p1−2∑
α=0

ω
c1(α+1)−c′1(α)
p1{

l∏
i=2

(
pi−1∑
α=0

ω
ci(α)−c′i(α)
pi

)}]
+Θ(Ψ(Gr),Ψ(Gr′ ))(τ − 2m)

[
l−2∑
f=1

{(
f∏

d=1

ω
cd(0)−c′d(pd−1)
pd

)pf+1−2∑
α=0

ω
cf+1(α+1)−c′f+1(α)
pf+1


 l∏

k=f+2

(
pk−1∑
α=0

ω
ck(α)−c′k(α)
pk

)}]+pl−2∑
α=0

ω
cl(α+1)−c′l(α)
pl(

l−1∏
d=1

w
cd(0)−c′d(pd−1)
pd

)
Θ(Ψ(Gr),Ψ(Gr′ ))(τ − 2m).

(13)

From Lemma 1, we have, Θ(Ψ(Gr),Ψ(Gr′ ))(τ) = 0, ∀τ ,
0 < |τ | < 2m. Therefore, from the above, we obtain,

Θ(ΨTrun(Ω
c
r),ΨTrun(Ω

c′

r′
))(τ) = 0, 0 < |τ | < 2m. (14)

From (12) and (14), we have,

θ(ΨTrun(Ω
c
r),ΨTrun(Ω

c′

r′))(τ)

=


p1p2 . . . pl2

m+n+1, r = r′, c = c′, τ = 0,

0, r = r′, c ̸= c′, 0 < |τ | < 2m,

0, r ̸= r′, c = c′, 0 < |τ | < 2m,

0, r ̸= r′, c ̸= c′, 0 < |τ | < 2m.

(15)
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Similarly, it can be shown that

θ(Ψ∗
Trun(Λ

c
r),Ψ

∗
Trun(Λ

c′

r′)(τ)

=


p1p2 . . . pl2

m+n+1, r = r′, c = c′, τ = 0,

0, r = r′, c ̸= c′, 0 < |τ | < 2m,

0, r ̸= r′, c = c′, 0 < |τ | < 2m,

0, r ̸= r′, c ̸= c′, 0 < |τ | < 2m.

(16)

From Lemma 1, we have Θ(Ψ(Gr),Ψ
∗(Ḡr))(τ) = 0, |τ | <

2m. From (9), (11) and Lemma 1, the ACCF between
ΨTrun(Ω

c
r) and Ψ∗

Trun(Λ
c
′

r′
) for τ = 0 can be derived as,

Θ(ΨTrun(Ω
c
r),Ψ

∗
Trun(Λ

c
′

r′
)(0)

=
∑
V

Θ(ΨTrun(M
V,r,c,h),Ψ∗

Trun(N
V,r′,c′,h))(0)

=
∑
V

Θ(Ψ(gV,r,h),Ψ∗(sV,r′,h))(0)

l∏
i=1

pi−1∑
α=0

ω
(ci+c′i)(α)
pi

= ω2λ
q Θ(Ψ(Gr),Ψ

∗(Ḡr′))(0)

l∏
i=1

pi−1∑
α=0

ω
(ci+c′i)(α)
pi

= 0.
(17)

By the similar calculation as in (13), we have

Θ(ΨTrun(Ω
c
r),Ψ

∗
Trun(Λ

c
′

r′
)(τ) = 0,∀ 0 < |τ | < 2m. (18)

Hence by (15), (16), (17), and (18), it is concluded that the
set S forms a (

∏l
i=1 pi2

n+1, 2m)− ZCCS
2m

∏l
i=1 pi

2n+1 .
Remark 1: The proposed construction gives optimal ZCCS

of length of the form
∏l

i=1 pi2
mwhere pi’s are primes. When

m = 1, all the even lengths ZCCS are accomplished, but
the ZCZ width is only two. In this case, the results are not
desirable and most MPI cannot be eliminated.

Remark 2: For l = 1, the proposed result in Theorem 1
reduces to (p2n+1, 2m)-ZCCSp2m

2n+1 as in [12]. Therefore, the
proposed construction is a generalization of [12].

Remark 3: In the same way as defined in [4, Remark1] The-
orem 1. produces atleast qm+1 m!

2n! (q − 1)n(m−n)q(
n
2) number

of non overlapping ZCCSs. For lack of space, we have not
included the proof in this letter. The reader is referred to [4,
Remark1] for the proof.

Corollary 1: ([8]) Suppose G(h) is a path in which the edges
have the same weight as q

2 . Thus h(V) can be written as

h(v0, . . . , vn) =
q

2

n−1∑
α=0

vπ(α)vπ(α+1) +

n∑
α=0

uαvα + u

, where u, u0, . . . un ∈ Zq . It is obvious from (11) that
the kth column of ψ(Ωc

r) is produced by setting Y at k=
(k0, . . . , km, . . . , kb−1), in the expression of MV,r,c,h where
(k0, . . . , km, . . . , kb−1) is the binary representation of k. The
kth column sequence of Ψ(Ωc

r) is generated from a GBF
whose graph is a path over n+1 vertices, as a result according
to [8] the kth column sequence of Ψ(Ωc

r) is a q-ary Golay
sequence. Thus each column of ΨTrun(Ω

c
r) is Golay sequence.

Thus the PMEPR of each column ΨTrun(Ω
c
r) is bounded by

TABLE I
ANALYSIS OF THE SUGGESTIVE CONSTRUCTION

WITH EXISTING WORK

Source Based On Parameters Conditions Optimal
[4] Direct (2k+p+1, 2m−p)− ZCCS2m

2k+1 k + p ≤ m yes
[5] Direct (2k+v, 2m−v)− ZCCS2m

2k v ≤ m, k ≤ m− v,m ≥ 3 yes
[8] Direct (2n+p, 2m−p)− ZCCS2m

2n p ≤ m,m ≥ 2, n+ p ≥ 2, n ∈ Z+, p ∈ Z+ yes
[11] Direct (2k+v, 2m−v)− ZCCS2m

2k v ≤ m, k ≤ m− v,m ∈ Z+, v ∈ Z+, k ∈ Z+ yes
[13] Direct (qv+1, qm−v)− ZCCSqm

q v ≤ m, q ≥ 2,m ≥ 2 yes
[14] Direct (2k+1, 2m+1)− ZCCS3.2m

2k+1 m, k ∈ Z+ yes
[12] Direct (p2k+1, 2m)− ZCCSp2m

2k+1 m ≥ 2, k ≤ m, p prime yes
[16] Indirect (2n+1, Z)− ZCCSN

2n+1 N ≥ 3, N is odd, ⌊N
Z ⌋ = 1 yes

[15] Indirect (K,M)− ZCCSK
M blueM,K ≥ 2 yes

Theorem 1 Direct (
∏l

i=1 pi2
n+1, 2m)− ZCCS

∏l
i=1 pi2

m

2n+1 l,m, n ∈ Z+, p′is are primes yes

2. Similarly the PMEPR of each column of Ψ∗
Trun(Λ

c
r) is

bounded by 2.
Example 1: Assume q=2, p1=3, p2=2, p3=2, a=6, m=3,

n=1, s1=2, s2=1 and s3=1. Let’s consider the following GBF
g : {0, 1}3→Z2 as, g= y1y2+y0, the graph corresponding to
g|y0=0 and g|y0=1 forms a path with one of the end vertices
being y1. Let h : {0, 1}2 → Z2 defined by h(v0, v1) = v0v1
From (4) we have,

Mc(Y)=3y1y2 + 3y0 + 2c1(y3 + 2y4) + 3c2y5 + 3c3y6,

Nc(Y)=3ȳ1ȳ2 + 3ȳ0 + 2c1(y3 + 2y4) + 3c2y5 + 3c3y6,
(19)

where c1∈{0, 1, 2}, c2∈{0, 1}, c3∈{0, 1}. From (11) we have

Ωc
r=
{
Mc(Y)+3(v0v1+v0y0 + r0y0 + v1y1) :

v0, v1 ∈ {0, 1}
}

Λc
r=
{
Nc(Y)+ 3(v0v1 + v0ȳ0 + r0ȳ0 + v̄1y1) :

v0, v1 ∈ {0, 1}
}
(20)

where 0 ≤ r0 ≤ 1. Therefore, the set

S =
{
ΨTrun(Ω

c
r),Ψ

∗
Trun(Λ

c
r) : 0 ≤ r ≤ 1, 0 ≤ c1 ≤ 2,

0 ≤ c2 ≤ 1, 0 ≤ c3 ≤ 1
}
,

forms an optimal (48, 8)-ZCCS96
4 over Z6 and the maximum

column sequence PMEPR is at most 2.

A. Comparison with Previous Works
The proposed work is compared with the direct construction

given in [4], [5], [8], [11]–[14] and indirect construction given
in [15], [16] and provided these in Table 1. The constructions
given in [4], [5], [8], and [11] produces optimal ZCCS of
length power-of-two and constructions given in [12]–[14]
produces optimal ZCCS of length non-power-of-two but do not
cover all even numbers. By indirect approach [16] and [15]
produces ZCCS of all possible odd lengths and all possible
lengths respectively.The proposed construction uses GBFs,
hence it is direct and produces all even length optimal ZCCS.

IV. CONCLUSION

In this work, a direct construction of optimal ZCCSs is pro-
posed for all possible even lengths using GBFs. The maximum
column sequence PMEPR of the proposed ZCCSs is upper-
bounded by 2 which can be useful in MC-CDMA system to
control high PMEPR problem. The proposed construction also
provides more flexible parameters as compared to the existing
GBFs based constructions of optimal ZCCS.
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