5 research outputs found

    Novel Resistorless Mixed-Mode PID Controller with Improved Low-Frequency Performance

    Get PDF
    This paper introduces a new resistorless mixed-mode proportional-integral-derivative (PID) controller. It employs six simple transconductors and only two grounded capacitors. The proposed PID controller offers several advantageous features of resistorless configuration, use of grounded capacitors, independent electronic-tuning characteristic of its parameters, and mixed-mode operation such as current, transimpedance, transadmittance, and voltage modes. The parasitic element effects of the transconductors on the proposed controller are investigated and the improved low-frequency performance of the proposed controller is then discussed. As applications, the proposed controller is demonstrated on two closed-loop systems. The PSPICE simulations with TSMC 0.18”m CMOS process and ±0.9V supply voltage verify the theoretical analysis

    Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Get PDF
    The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 ”W. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 ”m TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit

    Circuits for Analog Signal Processing Employing Unconventional Active Elements

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ zavĂĄděnĂ­m novĂœch struktur modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m a smĂ­ĆĄenĂ©m reĆŸimu. Funkčnost a chovĂĄnĂ­ těchto prvkĆŻ byly ověƙeny prostƙednictvĂ­m SPICE simulacĂ­. V tĂ©to prĂĄci je zahrnuta ƙada simulacĂ­, kterĂ© dokazujĂ­ pƙesnost a dobrĂ© vlastnosti těchto prvkĆŻ, pƙičemĆŸ velkĂœ dĆŻraz byl kladen na to, aby tyto prvky byly schopny pracovat pƙi nĂ­zkĂ©m napĂĄjecĂ­m napětĂ­, jelikoĆŸ poptĂĄvka po pƙenosnĂœch elektronickĂœch zaƙízenĂ­ch a implantabilnĂ­ch zdravotnickĂœch pƙístrojĂ­ch stĂĄle roste. Tyto pƙístroje jsou napĂĄjeny bateriemi a k tomu, aby byla prodlouĆŸena jejich ĆŸivotnost, trend navrhovĂĄnĂ­ analogovĂœch obvodĆŻ směƙuje k stĂĄle větĆĄĂ­mu sniĆŸovĂĄnĂ­ spotƙeby a napĂĄjecĂ­ho napětĂ­. HlavnĂ­m pƙínosem tĂ©to prĂĄce je nĂĄvrh novĂœch CMOS struktur: CCII (Current Conveyor Second Generation) na zĂĄkladě BD (Bulk Driven), FG (Floating Gate) a QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) na zĂĄkladě FG, transkonduktor na zĂĄkladě novĂ© techniky BD_QFG (Bulk Driven_Quasi Floating Gate), CCCDBA (Current Controlled Current Differencing Buffered Amplifier) na zĂĄkladě GD (Gate Driven), VDBA (Voltage Differencing Buffered Amplifier) na zĂĄkladě GD a DBeTA (Differential_Input Buffered and External Transconductance Amplifier) na zĂĄkladě BD. DĂĄle je uvedeno několik zajĂ­mavĂœch aplikacĂ­ uĆŸĂ­vajĂ­cĂ­ch vĂœĆĄe jmenovanĂ© prvky. ZĂ­skanĂ© vĂœsledky simulacĂ­ odpovĂ­dajĂ­ teoretickĂœm pƙedpokladĆŻm.The dissertation thesis deals with implementing new structures of modern active elements working in voltage_, current_, and mixed mode. The functionality and behavior of these elements have been verified by SPICE simulation. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of those elements. However, a big attention to implement active elements by utilizing LV LP (Low Voltage Low Power) techniques is given in this thesis. This attention came from the fact that growing demand of portable electronic equipments and implantable medical devices are pushing the development towards LV LP integrated circuits because of their influence on batteries lifetime. More specifically, the main contribution of this thesis is to implement new CMOS structures of: CCII (Current Conveyor Second Generation) based on BD (Bulk Driven), FG (Floating Gate) and QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) based on FG; Transconductor based on new technique of BD_QFG (Bulk Driven_Quasi Floating Gate); CCCDBA (Current Controlled Current Differencing Buffered Amplifier) based on conventional GD (Gate Driven); VDBA (Voltage Differencing Buffered Amplifier) based on GD. Moreover, defining new active element i.e. DBeTA (Differential_Input Buffered and External Transconductance Amplifier) based on BD is also one of the main contributions of this thesis. To confirm the workability and attractive properties of the proposed circuits many applications were exhibited. The given results agree well with the theoretical anticipation.

    On the Design of Power Law Filters and Their Inverse Counterparts

    Get PDF
    This paper presents the optimal modeling of Power Law Filters (PLFs) with the low-pass (LP), high-pass (HP), band-pass (BP), and band-stop (BS) responses by means of rational approximants. The optimization is performed for three different objective functions and second-order filter mother functions. The formulated design constraints help avoid placement of the zeros and poles on the right-half s-plane, thus, yielding stable PLF and inverse PLF (IPLF) models. The performances of the approximants exhibiting the fractional-step magnitude and phase responses are evaluated using various statistical indices. At the cost of higher computational complexity, the proposed approach achieved improved accuracy with guaranteed stability when compared to the published literature. The four types of optimal PLFs and IPLFs with an exponent alpha of 0.5 are implemented using the follow-the-leader feedback topology employing AD844AN current feedback operational amplifiers. The experimental results demonstrate that the Total Harmonic Distortion achieved for all the practical PLF and IPLF circuits was equal or lower than 0.21%, whereas the Spurious-Free Dynamic Range also exceeded 57.23 and 54.72 dBc, respectively
    corecore