416 research outputs found

    Non-blind watermarking of network flows

    Full text link
    Linking network flows is an important problem in intrusion detection as well as anonymity. Passive traffic analysis can link flows but requires long periods of observation to reduce errors. Active traffic analysis, also known as flow watermarking, allows for better precision and is more scalable. Previous flow watermarks introduce significant delays to the traffic flow as a side effect of using a blind detection scheme; this enables attacks that detect and remove the watermark, while at the same time slowing down legitimate traffic. We propose the first non-blind approach for flow watermarking, called RAINBOW, that improves watermark invisibility by inserting delays hundreds of times smaller than previous blind watermarks, hence reduces the watermark interference on network flows. We derive and analyze the optimum detectors for RAINBOW as well as the passive traffic analysis under different traffic models by using hypothesis testing. Comparing the detection performance of RAINBOW and the passive approach we observe that both RAINBOW and passive traffic analysis perform similarly good in the case of uncorrelated traffic, however, the RAINBOW detector drastically outperforms the optimum passive detector in the case of correlated network flows. This justifies the use of non-blind watermarks over passive traffic analysis even though both approaches have similar scalability constraints. We confirm our analysis by simulating the detectors and testing them against large traces of real network flows

    The Flow Fingerprinting Game

    Full text link
    Linking two network flows that have the same source is essential in intrusion detection or in tracing anonymous connections. To improve the performance of this process, the flow can be modified (fingerprinted) to make it more distinguishable. However, an adversary located in the middle can modify the flow to impair the correlation by delaying the packets or introducing dummy traffic. We introduce a game-theoretic framework for this problem, that is used to derive the Nash Equilibrium. As obtaining the optimal adversary delays distribution is intractable, some approximations are done. We study the concrete example where these delays follow a truncated Gaussian distribution. We also compare the optimal strategies with other fingerprinting schemes. The results are useful for understanding the limits of flow correlation based on packet timings under an active attacker.Comment: Workshop on Information Forensics and Securit

    ToR K-Anonymity against deep learning watermarking attacks

    Get PDF
    It is known that totalitarian regimes often perform surveillance and censorship of their communication networks. The Tor anonymity network allows users to browse the Internet anonymously to circumvent censorship filters and possible prosecution. This has made Tor an enticing target for state-level actors and cooperative state-level adversaries, with privileged access to network traffic captured at the level of Autonomous Systems(ASs) or Internet Exchange Points(IXPs). This thesis studied the attack typologies involved, with a particular focus on traffic correlation techniques for de-anonymization of Tor endpoints. Our goal was to design a test-bench environment and tool, based on recently researched deep learning techniques for traffic analysis, to evaluate the effectiveness of countermeasures provided by recent ap- proaches that try to strengthen Tor’s anonymity protection. The targeted solution is based on K-anonymity input covert channels organized as a pre-staged multipath network. The research challenge was to design a test-bench environment and tool, to launch active correlation attacks leveraging traffic flow correlation through the detection of in- duced watermarks in Tor traffic. To de-anonymize Tor connection endpoints, our tool analyses intrinsic time patterns of Tor synthetic egress traffic to detect flows with previ- ously injected time-based watermarks. With the obtained results and conclusions, we contributed to the evaluation of the security guarantees that the targeted K-anonymity solution provides as a countermeasure against de-anonymization attacks.Já foi extensamente observado que em vários países governados por regimes totalitários existe monitorização, e consequente censura, nos vários meios de comunicação utilizados. O Tor permite aos seus utilizadores navegar pela internet com garantias de privacidade e anonimato, de forma a evitar bloqueios, censura e processos legais impostos pela entidade que governa. Estas propriedades tornaram a rede Tor um alvo de ataque para vários governos e ações conjuntas de várias entidades, com acesso privilegiado a extensas zonas da rede e vários pontos de acesso à mesma. Esta tese realiza o estudo de tipologias de ataques que quebram o anonimato da rede Tor, com especial foco em técnicas de correlação de tráfegos. O nosso objetivo é realizar um ambiente de estudo e ferramenta, baseada em técnicas recentes de aprendizagem pro- funda e injeção de marcas de água, para avaliar a eficácia de contramedidas recentemente investigadas, que tentam fortalecer o anonimato da rede Tor. A contramedida que pre- tendemos avaliar é baseada na criação de multi-circuitos encobertos, recorrendo a túneis TLS de entrada, de forma a acoplar o tráfego de um grupo anonimo de K utilizadores. A solução a ser desenvolvida deve lançar um ataque de correlação de tráfegos recorrendo a técnicas ativas de indução de marcas de água. Esta ferramenta deve ser capaz de correla- cionar tráfego sintético de saída de circuitos Tor, realizando a injeção de marcas de água à entrada com o propósito de serem detetadas num segundo ponto de observação. Aplicada a um cenário real, o propósito da ferramenta está enquadrado na quebra do anonimato de serviços secretos fornecidos pela rede Tor, assim como os utilizadores dos mesmos. Os resultados esperados irão contribuir para a avaliação da solução de anonimato de K utilizadores mencionada, que é vista como contramedida para ataques de desanonimi- zação

    DeMarking: A Defense for Network Flow Watermarking in Real-Time

    Full text link
    The network flow watermarking technique associates the two communicating parties by actively modifying certain characteristics of the stream generated by the sender so that it covertly carries some special marking information. Some curious users communicating with the hidden server as a Tor client may attempt de-anonymization attacks to uncover the real identity of the hidden server by using this technique. This compromises the privacy of the anonymized communication system. Therefore, we propose a defense scheme against flow watermarking. The scheme is based on deep neural networks and utilizes generative adversarial networks to convert the original Inter-Packet Delays (IPD) into new IPDs generated by the model. We also adopt the concept of adversarial attacks to ensure that the detector will produce an incorrect classification when detecting these new IPDs. This approach ensures that these IPDs are considered "clean", effectively covering the potential watermarks. This scheme is effective against time-based flow watermarking techniques
    corecore