
DEPARTMENT OF
COMPUTER SCIENCE

MIGUEL SACADURA PAZ DOS SANTOS HORTA

Bachelor in Computer Science

TOR K-ANONYMITY AGAINST DEEP
LEARNING WATERMARKING ATTACKS
VALIDATING A TOR K-ANONYMITY INPUT CIRCUIT ENFORCEMENT
AGAINST A DEEP LEARNING WATERMARKING ATTACK

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
December, 2022

DEPARTMENT OF
COMPUTER SCIENCE

TOR K-ANONYMITY AGAINST DEEP LEARNING
WATERMARKING ATTACKS
VALIDATING A TOR K-ANONYMITY INPUT CIRCUIT ENFORCEMENT AGAINST A
DEEP LEARNING WATERMARKING ATTACK

MIGUEL SACADURA PAZ DOS SANTOS HORTA

Bachelor in Computer Science

Adviser: Professor Doutor Henrique João Lopes Domingos
Associate Professor, NOVA University Lisbon

Examination Committee

Chair: Professora Doutora Carla Maria Gonçalves Ferreira
Associate Professor, FCT-NOVA

Rapporteur: Professor Doutor Nuno Antunes
Assistant Professor, UC-FCT

Adviser: Professor Doutor Henrique João Lopes Domingos
Associate Professor, FCT-NOVA

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
December, 2022

ToR K-Anonymity against deep learning watermarking attacks

Copyright © Miguel Sacadura Paz dos Santos Horta, NOVA School of Science and Tech-

nology, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.10) [43].

https://github.com/joaomlourenco/novathesis

To a new chapter in life.

Acknowledgements

Firstly, I would like to address all the help that my advisor Professor Henrique Domingos

provided. He proficiently guided my thoughts and efforts when I most needed and his

help was vital towards the development of this dissertation.

I would also like to express my deepest regards to my family for providing me with

endless care and support and for always being able to grant me peace of mind.

Finally, I would like to thank my girlfriend for always being present, sharing my

toughest moments. To my friends, the old ones and the new ones I made along the way, a

big thanks for all the laughs and all the moments we lived together, which I will fondly

remember.

vii

“We can’t blame the technology when we make mistakes.”
(Tim Berners-Lee)

Abstract

It is known that totalitarian regimes often perform surveillance and censorship of their

communication networks. The Tor anonymity network allows users to browse the Internet

anonymously to circumvent censorship filters and possible prosecution. This has made

Tor an enticing target for state-level actors and cooperative state-level adversaries, with

privileged access to network traffic captured at the level of Autonomous Systems(ASs) or

Internet Exchange Points(IXPs).

This thesis studied the attack typologies involved, with a particular focus on traffic

correlation techniques for de-anonymization of Tor endpoints. Our goal was to design a

test-bench environment and tool, based on recently researched deep learning techniques

for traffic analysis, to evaluate the effectiveness of countermeasures provided by recent ap-

proaches that try to strengthen Tor’s anonymity protection. The targeted solution is based

on K-anonymity input covert channels organized as a pre-staged multipath network.

The research challenge was to design a test-bench environment and tool, to launch

active correlation attacks leveraging traffic flow correlation through the detection of in-

duced watermarks in Tor traffic. To de-anonymize Tor connection endpoints, our tool

analyses intrinsic time patterns of Tor synthetic egress traffic to detect flows with previ-

ously injected time-based watermarks.

With the obtained results and conclusions, we contributed to the evaluation of the

security guarantees that the targeted K-anonymity solution provides as a countermeasure

against de-anonymization attacks.

Keywords: Internet censorship; Anonymization networks; Tor Network; K-anonymization
Tor re-enforcements; Covert circuits ; Network flow watermarking; Tor flow
correlation attacks.

xi

Resumo

Já foi extensamente observado que em vários países governados por regimes totalitários

existe monitorização, e consequente censura, nos vários meios de comunicação utilizados.

O Tor permite aos seus utilizadores navegar pela internet com garantias de privacidade e

anonimato, de forma a evitar bloqueios, censura e processos legais impostos pela entidade

que governa. Estas propriedades tornaram a rede Tor um alvo de ataque para vários

governos e ações conjuntas de várias entidades, com acesso privilegiado a extensas zonas

da rede e vários pontos de acesso à mesma.

Esta tese realiza o estudo de tipologias de ataques que quebram o anonimato da rede

Tor, com especial foco em técnicas de correlação de tráfegos. O nosso objetivo é realizar

um ambiente de estudo e ferramenta, baseada em técnicas recentes de aprendizagem pro-

funda e injeção de marcas de água, para avaliar a eficácia de contramedidas recentemente

investigadas, que tentam fortalecer o anonimato da rede Tor. A contramedida que pre-

tendemos avaliar é baseada na criação de multi-circuitos encobertos, recorrendo a túneis

TLS de entrada, de forma a acoplar o tráfego de um grupo anonimo de K utilizadores. A

solução a ser desenvolvida deve lançar um ataque de correlação de tráfegos recorrendo a

técnicas ativas de indução de marcas de água. Esta ferramenta deve ser capaz de correla-

cionar tráfego sintético de saída de circuitos Tor, realizando a injeção de marcas de água à

entrada com o propósito de serem detetadas num segundo ponto de observação. Aplicada

a um cenário real, o propósito da ferramenta está enquadrado na quebra do anonimato

de serviços secretos fornecidos pela rede Tor, assim como os utilizadores dos mesmos.

Os resultados esperados irão contribuir para a avaliação da solução de anonimato de

K utilizadores mencionada, que é vista como contramedida para ataques de desanonimi-

zação.

Palavras-chave: Censura na Internet; Redes de anonimato; A rede Tor; Reforços do Tor com
K circuitos anónimos; Circuitos encobertos ; Injeção de marcas de água;

Ataques de correlação de fluxos Tor.

xiii

Contents

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Context and motivation . 1

1.2 Research opportunity . 2

1.3 Goals . 3

1.3.1 Contributions . 4

1.4 Report Organization . 4

2 Background 7

2.1 Internet censorship . 7

2.1.1 Content control and filtering approaches 7

2.1.2 The Censorship race . 8

2.2 Tor Network Background . 8

2.2.1 What preceded Tor . 8

2.2.2 The Tor network . 9

2.2.3 Establishment of Tor circuits . 10

2.2.4 Tor Hidden Services . 10

2.2.5 Tor Anonymity Guarantees . 10

2.2.6 Tor Bridges . 11

2.2.7 Attacks against Tor . 11

2.2.8 Tor pluggable transports . 12

3 Related Work 13

3.1 Tor Attacks . 13

3.1.1 Specific correlation attacks . 13

3.1.2 Enhanced correlation attacks . 15

3.1.3 Network flow watermarking attacks 17

xv

3.1.4 Attacks leveraged from internet routing level interceptions . . . 18

3.2 Tor Countermeasures . 19

3.2.1 Circumvention of adversary-poisoning relay nodes 19

3.2.2 Circumvention of Non-Trustable Autonomous Systems 20

3.2.3 Circumvention of unsafe geographical regions and related Geo-IPs 21

3.2.4 Tor strengthening using K-Anonymization Input Circuits 22

3.3 Watermarking Detection Methods and Tools 25

3.3.1 Blind watermarking with deep-learning techniques 26

3.4 Summary and Critical analysis . 28

4 TorMarker: System model and architecture 31

4.1 Architecture overview . 31

4.2 Threat model . 32

4.3 Components and their design . 33

4.3.1 Watermarking module . 33

4.3.2 Correlation module . 33

4.4 TorMarker’s purpose and operation . 35

4.4.1 Watermarker operation . 35

4.5 Summary . 36

5 Prototype implementation and environment setup 39

5.1 TIR environment . 39

5.1.1 TIR nodes . 39

5.1.2 Stunnel . 40

5.2 Watermarking module . 40

5.2.1 Watermark crafting . 41

5.3 Correlation module . 42

5.3.1 Training . 43

5.3.2 Parameter optimization . 44

5.4 Summary . 45

6 Experimental evaluation 47

6.1 Evaluation methodology . 47

6.1.1 Environment and scenario specification 47

6.1.2 Methodology and metrics . 50

6.2 Tor vanilla scenario evaluation . 53

6.3 TIR scenario evaluation . 54

6.4 TIR partitioned flows evaluation . 59

6.5 Performance evaluation . 60

6.6 Main findings . 61

6.7 State-of-the-art tools comparison . 62

6.8 Summary . 63

xvi

7 Conclusions 65

7.1 Main contributions . 65

7.2 Open issues . 66

7.3 Future implementations . 67

Bibliography 69

xvii

List of Figures

3.1 TorK architecture model with established k-anonymized circuits. 22

3.2 TIR nodes architecture model with established k-anonymized circuits. . . . 24

4.1 Threat model of the thesis’ case study. 32

4.2 Simple model of TorMarker’s operation. 35

5.1 Watermarking module’s design. 41

5.2 Plot of the artificial delays from the Rainbow watermark. 42

5.3 Plot of the artificial delays from the ICBW watermark. 43

6.1 Model of the connection used in Tor vanilla scenario. 48

6.2 Model of the connection used in the TIR sub-scenario 1. 49

6.3 Model of the connection used in the TIR sub-scenario 2. 50

6.4 Representation of a TorMarker deployment in a 3 TIR setup. 51

6.5 Plots of the natural IPDs found in regular flows from Skype traffic, left, and

P2P traffic, right. 52

6.6 Plots obtained from watermarked flow detection of Skype Tor traffic, following

scenario 1 . 53

6.7 Plots obtained from watermarked flow detection of P2p Tor traffic, following

scenario 1 . 54

6.8 Plots obtained from watermarked flow detection of Skype Tor traffic, following

sub-scenario 1 . 55

6.9 Plots obtained from watermarked flow detection of Skype Tor traffic, control

scenario comparison . 56

6.10 Plots obtained from watermarked flow detection of Skype Tor traffic, sub-

scenarios comparison . 56

6.11 Plots obtained from watermarked flow detection of P2P Tor traffic, following

sub-scenario 1 . 57

6.12 Plots obtained from watermarked flow detection of P2P Tor traffic, control

scenario comparison . 57

xix

6.13 Plots obtained from watermarked flow detection of P2P Tor traffic, sub-scenarios

comparison . 58

6.14 Plots obtained from watermarked flow detection of Skype and P2P Tor traffic 59

6.15 Plots showing the precision rate obtained by TorMarker against different num-

bers of TIR nodes. 59

6.16 Plots showing the false positive and true positive rates obtained by TorMarker,

Finn and DeepCorr. 62

xx

List of Tables

4.1 Model of the correlation module’s neural network. 34

5.1 Training parameters. 44

5.2 Validation set results when performing fully-connected layer optimization. 44

5.3 Validation set results when optimizing the filter numbers of the convolutional

layers. 45

5.4 Validation set results when optimizing kernel sizes of the convolutional layers. 45

6.1 Training and testing times for 70K packets. 60

xxi

1

Introduction

1.1 Context and motivation

The internet grew to be, without a doubt, the most used means of communication. For

countries controlled by authoritarian regimes, it is the perfect channel for citizens to

exercise their suppressed freedom of speech. Consequently, these totalitarian states invest

vast amounts of resources in filtering and blocking their citizen’s access to the internet to

maintain social and political supremacy [2, 11, 21].

Internet Censorship in Authoritarian Regimes

These Censors, attempt to block all content that isn’t aligned with their political views, and

in many cases religious beliefs. They resort to technical, legal and extra-legal strategies to

censor information before it reaches its citizens [11]. When dealing with illegal content

being spread through servers from within their jurisdiction, these governments proceed

to take down the source through legal action. To deal with the content being spread

from the outside, censors use their leverage to control domestic ISPs and employ complex

traffic filtering systems [4, 33, 80]. Using several techniques, ranging from IP address

and domain name blocking to traffic analysis, these systems regulate the information that

enters the censor’s jurisdiction.

The Tor network

The Onion Router, or Tor [74], is a volunteer-based network that allows for low-latency,

private, and anonymous communication for TCP-based applications, such as web brows-

ing. It was developed with the intent of giving everyone “private access to an uncensored

web"and, for many Tor users, this tool is their only means of accessing free, unfiltered

internet. Tor is based on a refined implementation of the onion routing technique [66].

Through the use of several cryptographic operations, Tor encapsulates a message within

several layers, like an onion, and sends that message through a sequence of relays until it

reaches the final destination [13]. Given its privacy and anonymization guarantees, this

network allows for citizens, journalists, whistle-blowers and many more, to freely access

1

CHAPTER 1. INTRODUCTION

the internet from inside authoritarian-government controlled countries which perform

heavy internet censorship [45, 65].

The Censorship Race

Tor’s effectiveness in circumventing censorship systems started getting more attention

from censors who started focusing their efforts to block Tor [42, 45, 65, 80]. This gave

rise to an "arms race"between the censors and the censorship-resistant tools. The censors

have to come up with new strategies for blocking these circumvention systems, and these

have to overcome the censors’ blocking efforts and research new ways of staying hidden.

Tor vulnerability to end-to-end correlation attacks

The Tor design was implemented to resist an attacker who has control of only a fraction

of the network [13]. However, it is vulnerable to de-anonymization attacks from an AS-

level adversary with privileged influence on both ends of the connection, for instance,

an ISP collaborating with an authoritarian government. End-to-end traffic correlation

approaches [19, 38, 49, 70, 84, 85] fall amongst this category of attacks to which Tor is

vulnerable, where network flow watermarking attacks [23, 28, 78], especially solutions

supported with Machine Learning and Deep-Analysis(ML&DA) algorithms [50, 67], are

the main object of study in this dissertation. Several different solutions have been re-

searched but, unfortunately, no approach has been found that completely fends off these

attacks. Instead, they serve as mitigation strategies that attempt to stop an adversary from

gaining the necessary conditions to deploy such attacks. The more researched approaches

are aligned with evading the establishment of circuits from within an AS-level adversary’s

sphere of influence [1, 12, 16, 35, 39, 59, 69, 70] or Tor protocol reinforcements [3, 51, 56,

60, 71].

1.2 Research opportunity

Due to its strong anonymity properties, Tor has become an interesting target for state-

level actors or cooperative state-level entities, for the good and the bad. This includes,

for example, the interests of repressive governments in breaking Tor anonymity condi-

tions to prevent political dissidence or reporting activities about violations of civil rights,

abuse of authority, or corruption news [2, 4, 11, 21, 33, 80]. On the other hand, Tor

de-anonymization is also targeted by state-level adversaries for law enforcement, or to

fight against organized online criminal activities [53]. Many attacks have been developed

in the nineteen years elapsed since the Tor network’s initial launch, in October 2002. As

a taxonomy reference in [18], attacks against Tor’s anonymity and privacy guarantees can

be grouped into seven categories: traffic correlation, traffic congestion, timing-based cor-

relations, fingerprinting, DoS, supportive attacks, and identification of hidden services.

2

1.3. GOALS

Other authors also classify attacks as passive (based only on traffic analysis and observa-

tions) or active (attackers induce pro-actively perturbations in the Tor operation or can

manipulate or control Tor resources). Broadly, traffic correlations can be conducted on

single-end or end-to-end Tor onion-routed circuits [18]

One of the most significant threats to Tor is correlation attacks [19, 38, 49, 50, 70,

84, 85], regarded as end-to-end attacks where an adversary monitors both edges of a Tor

circuit and seeks to establish a relation between flows (potentially asymmetric) observed

at the entry and exit points. The success of passive correlation attacks can be significantly

improved through the usage of pro-active watermarking inductions[23, 28, 78], with the

adversary manipulating “invisible” traffic patterns on inspected Tor circuits, for example

introducing predictability in features such as packet-delays, controlled jitter conditions

or selective packet-drops to improve the correlation effectiveness. These pro-active wa-

termarking strategies also allow for other detection-like approaches which attempt to

distinguish these induced patterns in traffic features, relating outgoing watermarked traf-

fic to its point of origin or even decoding invisible embedded data [23, 24, 25, 28, 67,

78]

On the other hand, to enhance the Tor-network resistance, the research community

proposed different solutions over time where some of those proposals are now native

mechanisms in the more recent versions of Tor (Bridges, Tor Relay Nodes, Tor-Onion-

Services/Tor Hidden Services). More recently, other researched solutions include Tor-

strengthening mechanisms based on K-anonymity input covert channels [51, 71]. How-

ever, the security analysis on such solutions is limited, not including traffic correlation

techniques based on pro-actively induced watermarking, and not using the more effective

traffic analysis approaches where the correlations are based on deep learning of Tor traffic

properties, used in more recent solutions such as [50, 67].

1.3 Goals

Our goal for the thesis elaboration was to design a test-bench environment and tool,

based on the more promising researched machine-learning techniques for ML&DA traffic

analysis, to evaluate the effectiveness of countermeasures provided by recent approaches

that try to strengthen the Tor network with the use of K-anonymity input covert channels.

We focused the use of the designed test bench and tool in an extended evaluation of a

previous solution that provides TLS tunnelled input circuits, and the possible inclusion

of media-streaming encoded covert circuits as an alternative for the K-anonymized covert

circuits [71].

The research challenge for our test-bench environment and the designed tool was the

ability to launch active correlation attacks, leveraging proactively induced watermarking-

based probes and watermark detection strategies through deep learning of marked traffic.

This tool can analyse traffic correlations on Tor’s synthetic egress traffic flows, consider-

ing the Tor network architecture, efficiently injecting and detecting proactively induced

3

CHAPTER 1. INTRODUCTION

watermarks to track down Tor users and Tor Onion Service providers used by such users.

With the expected results, we intended to contribute to the security evaluation of the

targeted K-anonymity solution [71] to find new required enforcements and countermea-

sures against de-anonymization attacks.

1.3.1 Contributions

Considering the thesis goal, we now present the expected contributions for this disserta-

tion:

• A specification proposal for a test-bench environment and tool to conduct deep

learning of watermarked traffic flows, with the objective of de-anonymizing com-

munications from Tor users and Tor protected onion services, supported by the

targeted pre-existent K-anonymization solution [71];

• The implementation of the specified test-bench environment and tool prototype for

performing the de-anonymization of Tor involved users and services when protected

by the targeted K-anonymization solution described earlier;

• Validation of the implemented solution, based on an extensive experimental eval-

uation of the implemented tool’s effectiveness and performance, regarding its full

parametrization and adaptability against diverse scenarios simulating different net-

work jitter conditions;

• Analysis of the experimental evaluation results and conclusions, to suggest future

improvements to the targeted Tor-Strengthening solution against deep learning

traffic correlation attacks with proactively induced watermarking techniques per-

formed by AS-level adversaries.

1.4 Report Organization

The remaining chapters are organized in the following way: chapter 2 presents an ini-

tial background of the Tor network’s architecture and operation, provided security and

anonymization features; chapter 3 was organized as a survey, covering typologies of

Tor de-anonymization attacks, countermeasures against such attacks and the most rel-

evant solutions involving traffic correlation attack techniques and tools, as well as Tor-

enforcement solutions considering state-level or cooperative global adversaries; chapter

4 will provide the tool’s conceptual specification, covering its global architecture as well

an in-depth description of the tool’s components and their operation; chapter 5 covers

the deployment specifications and necessary adaptations of the TIR prototype as well as

all details regarding our tool’s implementation; in chapter 6 we specify the methodology

and metrics used in the evaluations of our tool and TIR’s security analysis and show the

obtained results, also providing security recommendations based on the achieved results;

4

1.4. REPORT ORGANIZATION

finally, chapter 7 draws the conclusions for this dissertation, glancing over the main con-

tributions, some open-issues and future implementations regarding a possible extension

of this work.

5

2

Background

2.1 Internet censorship

For totalitarian regimes, it is crucial to have control over the country’s means of communi-

cation in order to maintain political supremacy [2, 21]. This also applies to countries that

have an extreme and intolerant religious influence, where these beliefs are enforced on

their citizens. The internet, being the largest and most influential way of communication,

is the perfect means for fighting back against these abusing authorities. This drives the

big majority of these governments to censor and control their citizens’ online communica-

tions, which might threaten the government’s political control, or even their population’s

exposure to content that is not be aligned with the country’s religious beliefs.

From a list of 45 chosen countries, 26 left evidence of performing some kind of fil-

tering and blocking of internet traffic [11]. The majority of these 26 countries perform

filtering on sensitive social and political content, internet tools such as anonymizers, cen-

sorship circumvention tools, social media platforms, streaming and P2P file sharing sites

and even content that might threaten national security. The type and extent of filtering

from these countries suggest that they get rid of any impediments to performing inter-

net censorship and then they turn to extend the filtering to political/social content and

censorship circumvention tools.

2.1.1 Content control and filtering approaches

When it comes to content control, censors have several approaches [11]. If the content is

being spread from domestic servers, they resort to legal action. If the content is hosted

in a foreign source it may be harder to deal with. Sometimes they have to turn to either

convincing private companies, or even governments, to take down the propagated content,

or just filter incoming traffic from that source. Some more aggressive approaches have

been recently growing such as denial-of-service attacks or even targeted hacking [11].

In order to filter high volumes of information, censors use communication distinguish-
ers to develop models that categorize allowed traffic and traffic that must be disrupted

[33]. They can perform several kinds of traffic control by blocking certain destination IP

7

CHAPTER 2. BACKGROUND

addresses, HTTP hosts, domain names and blacklisted keywords. They also fingerprint

forbidden protocols by creating a statistical model based on traffic flow distinguishers

and behaviour [33].

Censors also perform some kinds of direct censorship by, for instance, installing soft-

ware that disrupts access to information, directly on the user [33]. On the publisher side,

censors can corrupt information to be published or just disrupt the whole publication

process. Connection-wise, they can: degrade performance by manipulating the link be-

tween the user and publisher introducing delays; blocking IP addresses, ports, domain

and host names which is quite common; corrupt routing information to disrupt access;

corrupt flow content through the injection of fake server responses; and corrupt protocol

semantics by manipulating or just tearing down connections [4, 33].

2.1.2 The Censorship race

There are two sides competing in this digital arms race, the censors and the ones who

try to counter them, both consistently trying to innovate further than the other. This is

evident in the development of China’s censorship techniques when trying to block the

Tor network. The Great Firewall of China(GFW) blocks Tor’s public relays and it censors

hidden bridges through active probing of suspected servers. Before, the GFW identified

the use of the Tor protocol when performing deep package inspection on connections

due to Tor’s unique TLS cypher list. However, this was later prevented by a traffic ob-

fuscation tool in development at the time [80]. Nowadays, the GFW has adapted to new

traffic obfuscating tools and performs newly adjusted probing techniques [42]. Both sides

are in constant development, trying to frustrate the other’s attempts at producing new

techniques that will beat the other side.

2.2 Tor Network Background

Currently, the largest anonymization network is The Onion Routing project, widely

known as Tor [74]. With over two million connected users and six thousand public

routers, this volunteer-based network allows for low-latency, private, anonymous com-

munication and was developed with the common belief that "all internet users should

have private access to an uncensored web".

2.2.1 What preceded Tor

Modern anonymization networks are based on Chaum’s untraceable electronic mail from

1981 [10], which introduced a new technique for anonymous and private communication.

This technique makes use of a public-key cryptosystem to build a layered structure on top

of a message, effectively sealing it. This sealed message is then sent through a sequence

of proxies, called mixers, that decrypt each layer before relaying it to the next mixer un-

til it reaches the final recipient. Several years later, employing and refining some ideas

8

2.2. TOR NETWORK BACKGROUND

from Chaum’s work, the onion routing technique was introduced [66]. Users could estab-

lish bi-directional, near real-time private connections over a public network, resistant

to both traffic analysis and eavesdropping, while maintaining anonymity. The routing

network was composed of proxies named onion routers that have near-permanent socket

connections with the other routers, where connection data is routed through.

2.2.2 The Tor network

The Tor network implements an improved version of the aforementioned onion routing
technique, providing anonymity for TCP-based applications, like web browsing [13]. It is

composed of publicly listed routers called relays, responsible for routing the connections.

Each user runs an onion proxy(OP), local software that handles the connection with user

applications, establishes circuits and fetches the directories with current network infor-

mation and a list of the public relays, also called onion routers(OR). This proxy uses a

SOCKS interface, supporting most TCP-based programs without the need for modifica-

tions. Each onion router maintains two different keys: a long-term identity key, to sign

TLS certificates and its router descriptor; and a short-term onion key, to decrypt requests,

set up circuits and negotiate ephemeral keys. Relays also maintain TLS connections to

nodes they have been in recent contact with, which also generates a short-term link key

for each connection.

Most traffic that travels through the network is in 512 bytes fixed-size cells that con-

sist of a header and payload. This header carries a circuit identifier(circId) that specifies

the circuit to which that cell belongs. Cells are divided into two types, each type with

its several subtypes: control cells, interpreted by the receiving node, used for managing

the circuits; and relay cells, which have an extra header containing the stream identi-

fier(streamID), used for the data streams.

Circuits are the sequence of ORs which traffic is routed through. Before being sent to

the first node of the circuit, relay cells are encapsulated in several layers of encryption,

one for each node of the circuit, using the pre-negotiated keys with each OR. As it travels

through the circuit, the encryption layers are decrypted, one layer per relay hop, until it

reaches the exit node where it is relayed to the responder. When an OR receives a relay
cell, it looks up the corresponding circuit and decrypts the cell with the negotiated key for

that circID, before relaying the message to the next node. When an onion proxy receives a

relay cell, it unwraps it with the session keys shared with each OR on the circuit, from the

closest to the farthest. This design guarantees that only the exit node views the contents

of the decrypted message and each OR only knows the identity of the previous and next

nodes of the circuit. It is important to mention that Tor uses a leaky pipe circuit topology,

meaning the exit node doesn’t need to be the last one added to the circuit, as a way to

prevent some passive attacks[13].

9

CHAPTER 2. BACKGROUND

2.2.3 Establishment of Tor circuits

In Tor, since circuits take substantial time to be built due to public-key cryptography,

each circuit can be shared by multiple TCP streams. To avoid delays, circuits can even

be preemptively built by OPs. Users can also configure their applications, personalizing

which streams share the same circuit. When creating a circuit, to avoid flooding the

network with relays state information, clients get a list of the active relays through a

directory server. These make a small group of redundant trusted nodes that provide

signed directory documents describing connection information from known routers and

their current state.

The establishment of Tor circuits is done incrementally wherein each iteration the

OP negotiates a symmetric key with the onion router it wants to include in the circuit

next. After a circuit is closed, these symmetric keys are deleted which provides perfect

forward secrecy. The OP begins by sending a control create cell to the entry OR of the

circuit, containing the first half of the Diffie-Hellman handshake encrypted to the onion

key of that node. Once this first hop is established, the OP extends it by sending relay
extend cells to the entry router. These cells will contain the encrypted first part of the

handshake, also encrypted to the onion key of the node being added, and will specify the

address of the next OR so they are routed accordingly. After this iterative process, the

circuit is ready to initiate a stream.

The stream data is passed through relay cells. To open a data stream to a remote host,

the application asks the OP via the SOCKS interface. The proxy chooses an acceptable

exit node from the most recent circuit created, or just creates a new one, and sends it a

relay begin cell passing a new streamID. Once the exit note establishes a connection to

the remote host, it sends a relay connected cell back to the OP, which then notifies the

application about the open stream.

2.2.4 Tor Hidden Services

Tor also provides a way to build location-hidden services [13] where the service provider

doesn’t need to reveal his IP address. To host a hidden service (also called Onion Service),

a provider generates the service identity key and chooses its introduction points: ORs

where he will be waiting for requests. After the points are signed and advertised on the

onion lookup service, a user who wants to connect chooses an OR as a rendevouz point(RP)

and shares it with the provider through an introduction point. The provider builds a circuit

to the shared RP and the user’s OP sends a relay begin cell along the circuit, initiating the

data stream.

2.2.5 Tor Anonymity Guarantees

The internet is a highly surveilled network and, as we’ve seen in 2.1, it suffers from

severe content censorship in countries administrated by oppressive regimes. Tor’s help

10

2.2. TOR NETWORK BACKGROUND

is crucial for giving people, censored by these regimes, a way to communicate with the

outside. People like journalists, whistle-blowers, citizens affected by oppressive regimes

or even people who want to avoid corporate profiling. They are the ones who need the

Tor network’s privacy and anonymization guarantees to safely access the internet [45, 65].

However, this anonymization also attracts a lot of attention from illegal activities such as

the hosting of criminal-orientated websites, pretty popular within Tor’s hidden-services

[53].

2.2.6 Tor Bridges

Tor’s effectiveness in censorship circumvention and anonymity caused it to become a

target. Censors want to break it so they can maintain political control[80] and law en-

forcement wants to stop illegal online activities and services that act through it [20].

In order to cut access to Tor, censors begin by blocking public relays through IP

address and TCP port combination, and even the Tor website [62]. This way, users are

blocked from entering through the conventional way. In 2007, the Tor project began

developing bridges: onion routers that are not publicly listed in the relays directory [63],

making them not so trivial to be blocked. This development gave censored users the

option to choose bridges as the starting node for their circuits, potentially circumventing

the public relay block.

Bridges, however, are still vulnerable when Tor traffic is identifiable. Taking advan-

tage of packet header analysis to find the use of specific protocols or well-known ports

or even fingerprinting through specific strings, byte patterns and packet properties are

approaches for traffic classification [40] and are used to fingerprint Tor. For example,

Tor uses fixed-size cells of 512 bytes, which can make the packet-size distribution of the

protocol distinctive and identifiable to some fingerprinting attacks [13]. Another example

can be seen in the TLS connections created for relay communication which don’t use the

standard port for TLS traffic [47]. They use specific ports for communication between

relays and communication with directories. Also, in the TLS handshake, the Tor protocol

always has present the extension "server_name"which consistently follows the same for-

mat. These kinds of patterns can be used to identify Tor traffic and subsequently get the

unlisted bridges blocked by the censor.

2.2.7 Attacks against Tor

Over the years, more attacks against Tor have been discovered with more complex and

hybrid approaches. Evers [18] collects thirteen years of data about these attacks and

arranges into from two different perspectives. Regarding the type, these attacks can

be divided into Active attacks, where the adversary has the power to manipulate the

network’s traffic, for example injecting or delaying packets; and in Passive attacks where

he can only observe such traffic. The attack’s coverage can be distinguished from Single-
end attacks, only the exit or the entry node are monitored/manipulated, or end-to-end

11

CHAPTER 2. BACKGROUND

attacks, where both the entry and exit nodes are affected. Evers [18] also categorizes

Tor attacks, according to their methods and goals, in seven different types: Correlation
Attacks, Congestion Attacks, Timing Attacks, Fingerprinting Attacks, Denial of Service Attacks,
Supportive Attacks and Revealing Hidden Services Attacks.

Considering the relevance that attacks against Tor have for this dissertation, more

specifically traffic correlation attacks, we will cover their different types and respective

countermeasures in their dedicated sections of the Related Work chapter, 3.1 and 3.2.

2.2.8 Tor pluggable transports

As mentioned before, bridges can be found, and subsequently blocked, if Tor traffic is

identifiable by a censor that analyses network traffic. For this reason, Tor bridges can

support traffic obfuscation tools called Pluggable Transports(PT) [56]. These tools alter

the traffic flow properties from the connection between the user and bridge, so it is no

longer identifiable as Tor traffic. It is important to mention that, since the current PT

deployment strategy doesn’t check for unsafe PTs running, bridges supporting several

concurrent pluggable transports may reduce the security of the most secure ones [46].

Also, bridges that run additional non-Tor services, like SSH, are more vulnerable to being

tracked down across IP address changes [46]. There are a few PTs available for use, we

believe these four are the most relevant to cover:

• obfs4 is a traffic obfuscation layer for TCP protocols that aims to stop an attacker

from finding the protocol being used through the analysis of message contents [3].

The traffic obfuscation works through encrypting all application data with a key

derived from both the client’s and server’s initial keys [56].

• FTE, "format-transforming-encryption", is a pluggable transport that encodes data

in such a way that, if a censor uses regular expressions to distinguish between

allowed and disallowed traffic, FTE makes the data look like allowed traffic [56].

• meek. This PT uses a technique called "domain fronting"to trick the censor into

thinking the traffic is going to a legitimate server [56, 58], one that would cause too

much collateral damage to block (for instance meek-azure). It works by exposing a

legitimate domain name "outside"of the HTTPS request, in the DNS query and the

TLS Server Name Indication, and "inside", in the HTTP Host header, appears the

actual hostname.

• Snowflake. This circumvention tool makes use of volunteer snowflake proxies to

pass Tor traffic through WebRTC connections [60]. A Tor user, using a snowflake

client, starts by establishing a peer-to-peer WebRTC connection to a snowflake

proxy. Then, the proxy connects to a Tor relay and starts receiving Tor traffic from

the censored user, through the WebRTC connection, and relaying it to the entry

node.

12

3

Related Work

Following the initial background presented in 2, we will now go over a related work

analysis with relevant references aligned with the dissertation’s goals. This chapter will

be structured as such: section 3.1 will organize a typology of Tor attacks, covering four

main categories; section 3.2 describes countermeasures that have been proposed as Tor

enforcement security mechanisms, considering the attacks covered before; section 3.3

compiles different watermarking detection methods and tool important for the thesis

contributions; lastly, section 3.4 is a summary of the above sections.

3.1 Tor Attacks

As mentioned in 2.2.7, attacks targeted at the Tor network have been growing in com-

plexity over the years and several different approaches have been studied. For this

study of related work, we consider Tor de-anonymization attacks to be the main tar-

get. After reviewing several de-anonymization techniques, we present a taxonomy of de-

anonymization approaches, considered the most effective for the state-of-the-art. These

will be divided in subsections as such: 3.1.1 - Specific correlation attacks; 3.1.2 - En-

hanced correlation attacks; 3.1.3 - Network flow watermarking attacks; 3.1.4 - Attacks

leveraged from internet routing level interceptions. Each category will cover possible

relevant sub-categorizations.

3.1.1 Specific correlation attacks

A Correlation attack’s goal is to link flows observed in two distinct observations sites

of a circuit[18]. This flow correlation is based on traffic analysis and observable traffic

properties, since the traffic’s content can be substantially obfuscated in encrypted pay-

loads. We’ve mentioned that these attacks may have an active or passive approach, i.e, the

adversary may manipulate traffic or only observe it. The means to how an attacker gains

these necessary conditions may also differ. It can be done by compromising a node or just

running one [8, 17, 76], which is possible due to the volunteering nature of the Tor net-

work. We may also consider network-level threats like Autonomous Systems(ASes) and

13

CHAPTER 3. RELATED WORK

ISPs [49], which have inherent access to the possible target links. The correlation method

itself may be based on several techniques such as deep learning, probabilistic models,

statistical analysis, inherent Tor traffic fingerprinting or even watermarking observations

[6, 18].

A lot of passive correlation techniques use downloaded file sizes as a way to correlate

flows, performing packet counts from dedicated streams. Since Tor’s packets have fixed

512 byte-sized packets, being able to discover file sizes through packet counting becomes

a not-so-trivial task but nonetheless, still possible [68]. Furthermore, given that Tor works

as a low-latency network, it does not apply countermeasures to mask packet timings (such

as packet re-ordering or batching) making these features useful for attacks [85].

As stated earlier, correlation attacks mostly rely upon flows captured from client to

entry-node communication and exit-node to destination server. The full communication

path doesn’t need to be known for the attack to effectively de-anonymize the circuit, since

both the entry and exit nodes know, respectively, the client and the destination server IP

addresses.

We will now introduce relevant specific correlation attacks, starting from a timing-

based correlation approach.

Timing-based traffic correlations

Timing-based attacks are the first line of flow correlation attacks. The main method em-

ployed by these attacks consists in performing statistical analysis of traffic flow features to

link ingress and egress portions of communication channels from low-latency anonymous

systems such as Tor.

These flow features can range from packet arrival timings to traffic volume and other

possible flow patterns [18]. For instance, [38] describes the threat that Timing attacks
pose to low-latency mix systems through detailed simulations and analysis. This study

analyses the arrival times of successive packets and shows these timings can effectively

link traffic observed in two different relays of a circuit.

In [48], it is applied a relay congestion approach which consists in congesting different

relays, one by one, while observing any latency differences in the traffic flow of the target

circuit. The idea behind this approach is based on how applying congestion on the said

relay, every circuit traversing it will suffer latency differences. Observing a connection

and detecting latency variations, after congesting said relay, will confirm that relay’s

presence in the circuit of the observed connection. This attack is repeated until the circuit

is de-anonymized. In order to congest the target relays they need to be publicly listed,

so using hidden bridges will surely hamper this approach. Furthermore, this attack may

become impractical with Tor growing in scale and circuits being periodically rebuilt.

In [17] the same underlying strategy is maintained but enhanced with a bandwidth

amplification technique to deal with a larger-scale network. In another approach, [85]

shows a novel statistical analysis of packet arrival timings and frequency that correlates

14

3.1. TOR ATTACKS

flows in low-latency mix-based networks like Tor. The technique used extracted packet

arrival timings and sample sizes, compiling them into aflow pattern vector, which can vary

depending on the batching strategy used by the network. By correlating these vectors,

this attack accurately determines the output node used by traffic that comes through an

entry edge.

Other timing attacks, like [8], described an approach against low-latency network

anonymity systems that can expose the network identity of network endpoints (users or

relays) present in a target connection. It works by inducing fluctuations in the victim’s

TCP connection that creates traceable bandwidth patterns. In other approaches, [55]

suggests a Replay Attack that exploits the fact that Tor uses AES in counter mode to

encrypt the traffic’s layers. By duplicating relay cells at the entry node, encryption and

decryption counters would get disrupted resulting in decryption errors detectable at the

exit node, effectively linking the flows.

Some defensive mechanisms that try to mitigate timing-based attacks have been sug-

gested [48], however, to some degree, they all involve an increase in the network’s latency

so they are not feasible implementations to Tor. Instead, Tor relays send cells from differ-

ent streams in a round-robin fashion. This is a critical issue in the research of mitigation

solutions for Tor, that avoid timing-based attacks while not aggravating the latency and

throughput conditions for practical use.

The state-of-the-art flow correlation technique for Tor is DeepCorr [50], which will be

covered in 3.3.1 along with other important and enhanced correlation techniques.

Bandwith-based traffic correlations

Previous attacks resorted to traffic analysis based on the size and arrival timings of pack-

ets. Although proven successful, all of them required the involvement of a global ad-

versary or cooperative state-level adversaries, possibly needing control over a vast num-

ber of relays and observed circuits. Chakravarty [8] introduces another approach to

de-anonymize Tor users and even hidden services. The attack was employed through

a colluding network endpoint that would introduce propagating bandwidth variations

destined to the target. These bandwidth patterns would then be traced using a bandwidth

estimation tool, such as LinkWidth [7]. It was concluded in his work [8] that the attack

was mildly successful in a controlled real-world setting, representing an open direction

for Tor attacks in the future.

3.1.2 Enhanced correlation attacks

Moving through timing and bandwidth-based correlation techniques, we will now go over

a class of correlation attacks enhanced through complementary methods. We will start

by describing a correlation attack that exploits the victim at the application-level [76],

followed by Sybil correlation attacks that require the deployment of several malicious

15

CHAPTER 3. RELATED WORK

relays [14, 81]. Finally, we will cover the predecessor attack that hinges upon long-term

conditions of a link [12, 19, 84].

Application-level traffic correlations

Wang [76] describes a potential application-level attack that can effectively compromise

the anonymity of clients. The attack requires an adversary that is positioned at both

ends of a Tor circuit by operating malicious relays and it works by detecting a user’s

web page request and responding with a malicious website. When the victim’s browser

processes the malicious webpage, it will initiate a deterministic number of malicious

web connections to download the web page’s contents, creating a pattern that can be

recognisable when observing the traffic, and linking flows observed on both endpoints.

Sybil correlation attack

In a Sybil attack, the adversary model conditions include the possible deployment of

malicious relays in the Tor network and the creation of an illusion that those nodes

pertain to different entities. The goal is to manipulate as many nodes as possible to

control a disproportionately large fraction of the network [18], giving the attacker several

different vantage points to intercept user traffic. Most attacks on the Tor network gain

effectiveness in relation to how much of the network’s traffic an adversary can control

[81].

Mitigation solutions for these kinds of attacks are not trivial. Douceur [14] suggests an

approach where only trusted relays, certified by a central authority, can join the network.

However, relying on a single control entity defeats the very purpose of the Tor network,

and also exposes the system to other kinds of attacks. We underline that defence strategies

against Sybil attacks do not effectively cancel them, they act as mitigation solutions by

increasing the attacker’s setup effort or costs.

Predecessor sender attack

The Predecessor sender attack is a robust traffic analysis approach that aims to identify

single or multiple circuit initiators which communicate with the same destination, re-

peatedly over time. The idea here is to use the nature of Tor’s circuit creation and log

utilized relays in some repeated communication between two endpoints of Tor, inferring

long-term conditions that can be exploited by a traffic analysis-capable adversary [19].

To achieve success, the amount of influence over the network the adversary must have

grows linearly with the number of possible communication initiators. A possible solution

against this attack is proposed in [84] which assumes a static network model, i.e. nodes

do not leave the network. Where to defend against predecessor attacks, the authors pro-

pose to fix relays of Tor circuits in certain pre-known positions (e.g. entry, or exit). Tor

operation today uses a similar approach that implements guard node (pre-defined entry

relay of a circuit) rotation restrictions [12].

16

3.1. TOR ATTACKS

3.1.3 Network flow watermarking attacks

In this subsection, we cover attacks employed through traffic correlation, which make use

of watermarking or fingerprinting techniques. We start by discussing the essentials of traf-

fic correlation by watermarking and then finish by covering the diversity of watermarking

attacks.

Traffic correlation by watermarking

First introduced in 2001 by Wang et al [78], watermarking analysis techniques were

initially researched as solutions to support covert channels. Also in Wang’s work [78],

a watermark is defined as a small piece of data or pattern that identifies a connection

upon its detection. This means Network Flow Watermarking can be seen as a type of

traffic analysis technique [27]. It consists of adding a watermark, a specific pattern in the

traffic’s properties, identifiable by an observer monitoring the traffic who is searching for

that specific watermark. It is also worth mentioning flow watermarking techniques have

different uses, ranging from thwarting network cyberattacks [22] to launching their own

[28].

Watermarking-based traffic analysis is addressed in two stages [27]: conversion of

information into a watermark and embedding it into the flow – carried out by a system

component called watermarker; and observing the flow, identifying it as watermarked flow
and finally decoding it, retrieving the information from the watermark itself – carried out

by watermark detectors. In particular, as stated in Iacovazzi’s study [27], a watermarker

component must have three main functions: (1) Filtering - selecting which target flows

will be embedded with the watermark; (2) Encoding - encoding the information into sym-

bols that will be mapped into a sequence of bits (to be used not necessarily contiguous

across packets in traffic flows), which will, in turn, be transmitted through the watermark;

(3) Spreading - selecting a diversity scheme for spreading the watermark bits, to improve

resistance to interferences; and (4) Embedding - embedding the watermark into the car-

rier signal by slightly altering some of the carrier’s features. The watermark detector only

needs two phases: (1) Feature extraction - flow features that could potentially transport

watermark bits are extracted and compiled into a descriptor vector; (2) Decoding - the

detector computes the value of a function of the extracted features, which dictates if the

flow is watermarked or not.

Watermarking diversity approach

Concerning the previous approach, a watermarking technique’s type changes according

to the kind of carrier chosen to be embedded with the watermark’s bit. Iacovazzi [27]

distinguishes four kinds of these carriers: Content-based, Timing-based, Size-based, and

Rate-based. Regarding content-based watermarking, it is a method that injects the water-

mark directly into the payload or header of exchanged, unencrypted, data. Present in

17

CHAPTER 3. RELATED WORK

[78], this kind of watermarking is hardly used since it needs to be executed within an

unencrypted communication channel, which doesn’t agree with current-day encryption

guarantees, like the ones used in Tor. Timing-based watermarking is arguably the most

popular. It relies on introducing a controlled degree of delay to selected packets, such

that the sequence of arrival times and/or departure times (also called interleaving packet

delays or IPD) is the watermark. This sequence is extracted from an observation point and

the watermark is calculated as a function. As presented in several works about watermark-

ing [23, 24, 25], this function can be computed as the mean balance of either IPD values,

interval centroids or interval packet counts [27]. Regarding size-based watermarking, this

technique consists in altering selected packet lengths by padding content sizes according

to the watermark being embedded [64]. This method needs to be executed before traffic

is encrypted which decreases its overall applicability, similarly to content-based water-

marking. Finally, the last covered technique is rate-based watermarking which is done by

injecting dummy traffic in an active connection so the rate of real traffic going through

becomes a recognizable watermark. Of course, by fluctuating the rate of real traffic going

through, this approach might be detected or just degrade the quality of the link. So, we

are presented with a trade-off where on one hand, we can increase the scale of the traffic

rate fluctuations to ease the watermark’s detection and provide better robustness, and on

the other hand, increasing fluctuations translates into a bigger probability of the attack’s

detection and degradation of the communication’s quality.

When embedding the watermark in the carrier’s signal, watermarks are spread across

a specific domain, following specific diversity schemes in order to gain robustness against

possible interferences in the channel which might destroy the watermark. These schemes

are closely tied with the type of watermark and, consequently, optimized for the carrier

protocol used [27]. In generic terms, we can characterize these diversity schemes in

three different approaches [27]: Time diversity, where the watermark is replicated several

times at different timings [23, 24, 25], the most used scheme in time-based watermarks;

Frequency diversity, a scheme which creates interferences in the flow rate, to embed a

pseudo-noise code that allows for the transmission and spreading of the watermark[26];

and finally, the Spatial diversity scheme, which consists in sending the embedded wa-

termark through different channels. This must be accomplished in a lightweight way,

otherwise, it could be difficult to detect the watermark in a useful time, and the water-

marking signal must be amplified enough for its effective detection [22].

3.1.4 Attacks leveraged from internet routing level interceptions

Raptor

In [70] the authors discuss a set of attacks enabling ASes to compromise Tor user’s

anonymity. RAPTor is broken down into three different attacks, leveraged by the asym-

metric nature of Internet routing and the dynamic aspects of BGP, the globally used

Internet Border Gateway Protocol.

18

3.2. TOR COUNTERMEASURES

Asymmetric traffic analysis: Given the nature of internet routing, paths are often

asymmetric. It might be the case that an adversary can only see opposite direction flows

in different observation sites. This attack leverages the use of TLS to perform successful

correlation attacks [70].

Churn exploits: This attack exploits the natural internet router’s churn to increase

an AS-level adversary’s surveillance capability over time. Through churn injection, this

attack could improve the amount of Tor circuits a single observing AS could compromise

by 50% [70].

BGP interception: In this attack, a malicious AS hijacked traffic otherwise directed

at another AS by falsely advertising its ownership over a range of IP addresses owned by

the legitimate one [70].

3.2 Tor Countermeasures

One of the main vulnerabilities of Tor is correlation-based traffic analysis, as initially pre-

sented before. These attacks are particularly amplified if we consider global adversaries.

A global adversary is an adversarial model in which it is possible to conduct traffic corre-

lations through multiple observation sites which, in the worst scenario, the adversary is

capable of eavesdropping on the entire network. This adversary model assumption was

considered in the research of Tor strengthening solutions that could be used as global

countermeasures. These countermeasures could be targeted by solutions complementing

a variety of defence mechanisms that have been studied by the research community.

In our related work analysis, the most interesting solutions are characterized in the

following way: Section 3.2.1 - avoidance solutions to circumvent adversary poisoning

relay nodes [9, 12, 16, 57, 59, 61, 82]; Section 3.2.2 - circumvention of non-trustable

Autonomous Systems [1, 15, 30, 31, 69, 70, 75]; Section 3.2.3 - avoidance of unsafe

geographical regions and related GeoIP mappings [35, 37, 39, 61, 79]; and section 3.2.4 -

Tor strengthening solutions improving the base Tor circuit’s anonymity guarantees with

K-anonymization[51, 71].

3.2.1 Circumvention of adversary-poisoning relay nodes

To mitigate the attempts of global adversaries launching poisoned-relay attacks, clients

must avoid the use of unsafe relay nodes (controlled by adversaries) in established circuits.

The more relevant techniques and solutions proposed in the literature can be summarized

as follows:

• Scan, enumerate and flag the possible relay nodes. This approach is already used

in Tor, in more recent client-enabled Tor software tools that try to decrease the

probability of the selection of poisoned nodes. Upon detection of suspect relay

behaviour, Tor uses a set of labels designated as control flags [57] which can be

19

CHAPTER 3. RELATED WORK

disseminated in a P2P fashion through the network. Tor maintainers run a service

aimed at verifying the reports of possibly unsafe relays [82] and exit nodes [9, 59].

• Selective setup from clients. Tor allows for restrictions regarding the set of entry

nodes used by clients in an attempt to mitigate guard rotation weakness [12, 16].

An unlucky client, however, could still select a malicious guard. If clients adopt

the behaviour of randomly switching over different guards, using a set of candidate

nodes, the chance of regaining anonymity improves. This solution alone is not

effective when considering a near-global adversary, as demonstrated in [12]. In [16]

the authors also demonstrated that Tor’s exaggerated time-based guard rotation

presented vulnerabilities to profiling attacks.

3.2.2 Circumvention of Non-Trustable Autonomous Systems

The techniques in 3.2.1 may not be effective when an adversary can observe large zones

of the Tor network. A Global Adversary may not even need to gain control over specific

relays to de-anonymize Tor traffic. It can just have eavesdropping capabilities on the

inter-relay traffic that crosses the network within those large regions controlled by the

adversary [30, 31]. To find countermeasures against these adversaries, researchers have

proposed enhanced defensive approaches. Typically, such approaches attempt to help Tor

clients’ to choose paths away from the prying eyes of malicious ASes, by leveraging, for

example, the analysis of the Internet topology boundaries and observations in inter-relay

latencies [75]. Among the proposed solutions, we can summarize the following ones, as

the more representative of these countermeasures:

AS-aware path-prediction

This approach is focused on predictive path selection algorithms for decreasing the chance

of an AS-level attacker observing traffic flowing between Tor circuits’ endpoints [1, 15,

69, 70].

AS-aware path mandates and diversity of Geo-IPs

In [15] it was suggested the addition of two new requirements to the Tor path selection

algorithm: the use of mandates (with considered trust-nodes) and path-establishment

using IPs with Geo-IP diversity - avoiding IPs in the same AS. It was observed that

these approaches decreased the probability of an AS eavesdropping on both ends of a

connection. However, they did not sufficiently mitigate the possibility for a malicious

AS to perform traffic correlation (in different circuits). Some solutions related to these

strategies are:

• LAStor[1]. LAStor is an AS-aware Tor client that can select safe paths between a

client and a destination.

20

3.2. TOR COUNTERMEASURES

• AS Relay Announcements. In [70] the authors proposed that each relay must

publish, as part of the Tor consensus document, the list of ASes it uses to reach a given

relay or a destination. Clients could then use this information to establish safe circuits.

• Astoria, described in Starov’s work [69], is an AS-aware variant of Tor, which avoids

the use of vulnerable circuits using efficient network management based on load bal-

ancing circuits across secure paths. Being a god solution in the vision of how to avoid

untrustworthy Autonomous Systems, we must mention that this solution alone, cannot

resist active BGP interception attacks [70] and might become outdated with the dynamic

routing management from AS Relays announcements.

3.2.3 Circumvention of unsafe geographical regions and related Geo-IPs

In the literature, this type of attack circumvention focuses on avoiding entire geographic

regions altogether, looking at country-level granularity (and not necessarily at AS-level

observation). The main motivation is to evade censorship policies from specific repressive

governments. Currently, Tor allows users to select a set of countries to exclude from cir-

cuit selection [61], however, the path between safe nodes might still cross these excluded

countries [39]. The solution for this purpose was initially proposed by different authors

and experimental tools:

DeTor[39]

Uses a technique that proves a Tor circuit, even in between nodes, does not cross excluded

regions. To provide the so-called provable geographic locations, DeTor authors borrow

the idea of alibi routing(AR) [37] into Tor. Alibi routing is a routing strategy based on

packets’ round trip times(RTTs) and the speed of light, as a constant to prove that a given

packet did not travel within forbidden regions. AR observations use single relays located

outside a certain “forbidden region” to confirm that traffic is going from that relay to

the destination. While the base AR strategy uses one single relay, DeTor generalizes the

solution for three relays. Unfortunately, there are a few limitations regarding DeTor which

make it a limited solution in providing provable geographical avoidance conditions:

• DeTor may also use IP geolocation services to find the exact location of Tor relays,

not necessarily with further confirmation which hampers the accuracy of DeTor’s

provided measurements [35, 79].

• In high latency links, it is not possible to measure the packets’ travel times accu-

rately, solely relying on RTT measurements.

• Third, DeTor assumes only a symmetric routing approach which doesn’t correspond

with the real operation of ASes and Routing.

21

CHAPTER 3. RELATED WORK

TrileraTor

This approach was proposed in [35], as a possible improvement to overcome DeTor’s

main limitations. The solution is based on a new measurement technique that derives a

circuit’s end-to-end timing from the handshake in Tor’s circuit establishment process. To

prevent the use of fake GeoIP information in its measurements, TrilateraTor leverages a

distributed measurement infrastructure and protocol which obtains accurate estimates

for the locations of relays.

3.2.4 Tor strengthening using K-Anonymization Input Circuits

As solutions designed for the mitigation of correlation-based traffic analysis on Tor, con-

sidering a global adversary model, some recent proposals address the possibility of ex-

ploring traffic disaggregation using multipath-based circuits. Those solutions have been

studied in the context of K-anonymization, particularly focusing on Tor input circuits.

The following proposals are aligned in this perspective:

TorK [51]

This system is a contribution focused in providing defensive countermeasures against

global adversarial attacks. The essential approach in TorK is to strengthen the anonymity

set associated with the source IP address of a given Tor circuit from one single user to a

set of k plausible users. This idea is represented in the figure 3.1.

Figure 3.1: TorK architecture model with established k-anonymized circuits.

In the represented figure, we observe that the TorK network model includes two

components: the TorK client and the TorK bridge. Both TorK components implement a

specific pluggable transport and must be fully compatible with the existing Tor compo-

nents (Tor bridges and input relays) and client-side software applications. For the TorK

operation represented in figure 3.1, Alice leverages TorK to communicate with a given

web server (represented on the right), through a standard Tor vanilla circuit. The access

22

3.2. TOR COUNTERMEASURES

from the client to the entry node is proxied by the TorK bridge. TorK strengthening

intends that when considering a global-level adversary that can observe all exchanged

network packets, using standard vanilla Tor circuits, the adversary would be able to de-

anonymize Alice’s client by correlating the entry and exit flows. However, TorK prevents

this attack by allowing k-1 additional users (Bob and Charlie) to collaborate with Alice so

that the adversary will not be able to distinguish who amongst them is the real originator

of the traffic associated with this circuit.

To achieve this, prior to the circuits’ establishment, the k users open connections,

called TorK segments, from their client to the bridge. Each segment acts as a covert tunnel

between the local client and the bridge, such that the local client can send arbitrary traffic

through it. However, while Alice’s segment will be used to transmit Tor packets, the

segments of the supporting users will transmit chaffing payloads. The bridge discards

the chaff and only forwards Alice’s actual traffic to the entry node. To prevent the global

adversary from distinguishing which segment carries the Tor circuit’s cells (achieved by

observing differences in the volume and timing properties of the observed traffic), the

traffic of all participating segments is encrypted and modulated according to a common

traffic shaping function. Thus, even though the attacker can capture and inspect the traffic

from each of the three users, it cannot correlate the message to the original sender due

to indistinguishability between segments. He would have to randomly guess the sender

having a 1/k probability of succeeding: the core idea behind K-anonymity condition. This

is why TorK provides k-anonymity by allocating k-sized groups, introducing the term “k-

anonymized circuit” to refer to a coordinated setup of k segments protecting Tor input

circuits.

TIR Nodes [71]

In this proposal, a solution based on TorK was enhanced with the use of a more robust

pre-staging solution in which several gateways (special Tor bridges called TIR nodes)

implement overlaid TLS-enabled TorK segments, that can connect clients and these Tor

bridges. These bridges can work in a stand-alone fashion or can be components coupled

to Tor clients. Moreover, TIR nodes can forward client packets according to a multipath

routing strategy involving K TIR nodes. The figure 3.2 represents a generic environment,

with an operation of k TIR nodes.

The underlying support for the multi-staged circuits between TIR nodes is provided

by a standard parametrizable S-TUNNEL solution [83], allowing all the TLS 1.2 or TLS

1.3 parametrizations and cypher suites to be used. Furthermore, the TIR nodes are also

responsible for the traffic fragmentation of original client packets in parametrizable Tor-

compliant cells. As in the TorK solution, TIR nodes also include chaffed traffic and are

used to decouple the original input traffic in several flows which are sent to multiple Tor

entry nodes, by collaborative proxied connections. So, even if the attacker observes all

flows, it can only de-anonymize a set of k clients using the network.

23

CHAPTER 3. RELATED WORK

The proposal in [71] involved the analysis of the effectiveness of the proposed solu-

tion, focused on processing observations of Tor input traffic and Tor-output traffic using

powerful Machine Learning algorithms analysing packet-lengths, interleaving timing of

packets or duration of traffic-sessions, as observable multi-features. The tool used to eval-

uate the correlation between chaffed and covert traffic is XGBoost, a distributed gradient

library that implements a gradient boosting machine learning algorithm. After evaluating

four scenarios, starting with a single TIR node and incrementing one for each iteration,

the classifier demonstrated lower values of separability of flows when more TIR nodes

were in use, as expected. It presented AUC values as low as 0.59 when four TIR nodes

were used, really close to random guessing, proving the solution’s effectiveness against

this tool.

Figure 3.2: TIR nodes architecture model with established k-anonymized circuits.

Finally, an enhancement of the TIR solution is ongoing, providing more diverse sup-

port for the multi-staging TIR-based network using the K-anonymity TIR nodes. For

this diversity, the solution will include the support of TIR to TIR circuits to use real-

time steganographic media streaming covert channels [5]. In this case, the packets inter-

changed by the TIR nodes can be hidden as “covert” bits embedded in standard media

traffic (such as Web RTC channels). For an adversary, these circuits will be undetectable

(or unobservable) by using the studied attack typologies.

24

3.3. WATERMARKING DETECTION METHODS AND TOOLS

3.3 Watermarking Detection Methods and Tools

When performing watermark detection the methodologies are relatively straightforward.

As mentioned in 3.1.3, the watermark only depends on the encoding type and diversity

scheme used for the support carrier. As an approach to building a watermarking tool, the

detector will collect the traffic’s features and form a descriptor vector for the observed

flow that is used. Such vector is then used as the starting element to compute the value of

a function, which will decide whether a flow is watermarked or not. Watermark decoding

algorithms may be distinguished into different families: non-blind algorithms [23, 24,

25] or blind algorithms [77]. Non-blinding means that the analysis is dependent from

a known-carrier data watermarking encoding. Blind algorithms are those in which the

analysis is independent of the carrier data provided by the watermarker. We will describe

next the techniques and tools we found in the related-work analysis.

Advanced time-based watermarking tools. Some methods and tools implemented

more advanced techniques for watermarking analysis. For example, in the Rainbow ap-

proach [25], the authors proposed a watermarking scheme that would be able to use

delays, hundreds of times smaller than previous techniques resulting in inherent invis-

ibility for detection and more robustness to interference. When the delays were very

small, Rainbow [25] had to be non-blind – the packet IPD values extracted had to be

compared with ones recorded at the watermarker. The watermark extraction in Rainbow

used normalized correlation to account for network jitter and has a pre-processing step

before it to render the system robust to packet addition/removal. Performed evaluations

led the authors to conclude that the system was not only invisible to detection but also

presented false error rates for short observations. Nevertheless, we noticed possible draw-

backs, such as possible visibility conditions when comparing with more recent counter

flow watermarking techniques [41, 44].

Scalable watermarking with resilience against packet-losses. Swirl [23]was pro-

posed as a new watermarking scheme, more scalable, invisible and resilient to packet

losses. Swirl’s watermark pattern was specifically adaptable to the characteristics of each

flow being marked. Similarly to Rainbow [25], Swirl also uses watermarked flows by

introducing very small delays, with the same base invisibility to detection tools. How-

ever, there is an essential difference since Swirl proceeded to divide a flow into intervals,

subintervals, and yet again into slots. Two intervals, the base and the mark were selected.

The base interval was used to derive the necessary parameters for watermark embedding.

According to parameters derived from the base and a specific watermark key, packets

from the mark interval were delayed as to be permuted to specific slots, in said interval.

Then, the detection consisted of analysing the base, extracting the necessary parameters,

and checking if the packets in the mark followed the imposed watermarking distribution.

The results using this approach showed an improved accuracy under ideal conditions.

For relatively large flow lengths it is necessary to have some minutes to achieve ideal

conditions. Unfortunately, other studies revealed this approach to be vulnerable to more

25

CHAPTER 3. RELATED WORK

recent counter-watermarking techniques [41, 44].

Inverse-Flow Watermarking. In a more recent contribution, the authors proposed the

Inflow approach and related experimental tool [29]. The technique here is to identify Tor

Hidden Services using an inverse flow watermarking strategy. Inflow follows a time-based

diversity scheme and carrier. The rationale is to conduct an attack leveraging network

congestion mechanisms, to induce Hidden Services’ traffic patterns from a watermarker

located client-side. In particular, TCP acknowledgement packets from the client to the

service provider were dropped in short bursts to temporarily stop and resume packet

transmissions from the provider, creating traffic gaps. In the evaluation methodology,

the adversary controls both edges of the circuit and can detect the watermarking gaps.

The watermark detector, located Hidden-Service-side, had previous knowledge of the

estimated periodicity and duration of the gaps and analysed IPDs to identify and extract

the specific watermark from the flow. With appropriate parameter tuning, the system

was able to achieve 96% true positive and 0% false-positive rates when correlating flows.

The authors also tested Inflow against known counterflow watermarking techniques (the

ones described in [27]) concluding its successful robustness against such attacks.

Exploitation of intrinsic traffic congestion of the Tor protocol. This approach, ad-

dressed by the Duster technique [28], implements a traffic analysis attack through wa-

termarking focused on de-anonymizing Tor Hidden Services. Following the author’s

description, the Duster’s novelty was because: it exploits Tor’s congestion protocol mech-

anism intrinsically; it was hidden from the target endpoint; and, did not affect network

performance. In normal conditions, Tor uses SENDME cells as acknowledgements, sig-

nalling a Hidden Service that a client received a fixed amount of relay cells. Tor generates

one SENDME every 50 cells and another every 100 cells – and then is ready for the next

batch. Duster leveraged this mechanism and watermarked flows by sending a large batch

of SENDME cells to the Service Provider while refraining from sending anymore before

receiving all related data. In the approach, a watermark detector located Hidden Service

side listened for the SENDME cell batch and silence pattern and was able to identify the

flow as watermarked. For the Hidden Service not to notice the watermarking behaviour,

the detector kept track of all data cells sent by it and forwarded the expected SENDME

cells to clients, essentially hiding the watermark. With appropriate tuning, the authors

found through experimental evaluation, the true positive rate(TPR) could be as high as

98% with false-positive rates(FPR) only 3%. In 2020, Tor set version 1, SENDME cells

are used as the consensus default. This version introduced authenticated SENDME cells,

which prevents this attack altogether.

3.3.1 Blind watermarking with deep-learning techniques

The use of blind watermarking techniques together with deep-learning algorithms is a

more recent promising technique. We will analyse in this category of techniques and ex-

perimental observation tools, two of the more advanced state-of-art proposals: DeepCorr

26

3.3. WATERMARKING DETECTION METHODS AND TOOLS

[50] and Finn [67].

3.3.1.1 DeepCorr [50]

DeepCorr is a state-of-the-art correlation attack approach supported by deep learning. In

the DeepCorr attack model, the core idea is to train a convolutional neural network(CNN)

to learn the intrinsic signature of traffic in the Tor network – called the network’s corre-

lation function. In fact, the complex nature of noise in Tor and the unpredictability of

natural (or eventually induced) perturbations in the network, were pointed out as rea-

sons for the existing correlation attacks’ inefficiency, in a real-world scenario. A CNN

implementation was chosen since this type of neural network is known for having good

performance on time series. In DeepCorr, the CNN is composed of two layers of convo-

lution and three fully connected layers. It can be seen as a pipeline where inputted flow

pairs get returned values of 0 and 1. Each flow is represented by four vectors – two for

upstream and downstream inter-packet delays and two for upstream and downstream

packet sizes – and the flow pair is represented by an eight-row matrix constructed from

both flows’ vectors. The output represents the probability of the two flows being corre-

lated. The first convolution layer is intended to capture the similarities between adjacent

rows of the previously mentioned eight-row matrix while the second has the goal of cap-

turing overall traffic features from the combination of timing and size information. To

train the CNN, the authors presented it with two large, labelled, sets of flow pairs, where

one had correlated flows and the other did not. For this tool’s experimental validation

[50], the authors performed evaluations using flows collected by accessing the top 50000

Alexa websites, via Tor. In the evaluation, half of the collected flows were used for train-

ing purposes and the other half for testing. From each flow, only the first 300 packets

were used, applying padding to shorter flows. By observing the system’s performance

for a month, the authors concluded that retraining would be necessary approximately

every three weeks. In comparison to previous presented state-of-the-art systems, such as

Raptor [70], DeepCorr was able to achieve much better accuracy for long observations

and significantly better accuracy for shorter observations. With only 900 packets, the

system achieved 96% accuracy (comparing for example with 4% achieved with Raptor.

While Raptor was able to present 96% accuracy with 100MB of data, DeepCorr was able

to reach 100% accuracy, but with only 3MB. Regarding processing time, DeepCorr was

roughly two times slower than Raptor for same size observations. However, since Deep-

Corr needed significantly smaller observation times to achieve the same level of accuracy

as previous systems, it ended up being much faster than the others. It is still necessary

to conduct more observations and analyses to understand the necessary criteria for the

periodic retaining of the CNN.

27

CHAPTER 3. RELATED WORK

3.3.1.2 Finn [67]

Finn was presented as an enhancement of the DeepCorr system [50]. Following a time-

based diversity scheme and carrier, Finn’s watermarks get embedded via packet delays

in target flows. However, the new insight introduced is that it leverages neural networks

to avoid a “manual” process for embedding and extracting the watermarks. Finn’s wa-

termarker is made up of a neural network with four hidden layers. As input, it takes the

watermark to be embedded (a vector of all zeros and a single one) and the network noise

at the target flow. The output is a vector of delays to be added to the flow’s packets whose

size is equal to the total number of packets in the flow. The generated delays take into

account the network noise expected to be introduced to the flow, such as to prevent it

from damaging the watermark. The decoder consists of a network of two convolution

layers and two fully connected ones. As input, it takes the noisy and watermarked IPDs

extracted from the received flow. The two convolution layers extract the encoded noise

as well as watermarked one. The fully connected layers extract the watermark itself by

returning a vector of probabilities of the same size as the number of bits in the watermark.

Since the watermark is made up of a single one, the highest probability taken reveals the

one’s “location”.

The model is trained with data regarding different IPDs, watermarks, watermark de-

lays and network noise. The evaluation conducted on the live network, explained in [67],

allowed the authors to determine that, after proper parameter tuning, the system was

able to achieve TPR between 93% and 97% and an FPR as low as 1%. If we compare

the results with those obtained in the experimental evaluation of DeepCorr, it is notice-

able that Finn has slightly better results with much fewer data (50 packets compared to

DeepCorr requiring 300). The conducted evaluation also showed that Finn is also robust

against real-time noise and embeds a watermark extremely difficult to detect. In the state-

of-the-art, Finn seems to be the more advanced technique and tool, obtaining very high

accuracy rates with a small data volume, while exhibiting considerable robustness and

invisibility. With this approach, it is expected that jitter fluctuations negatively impact

the system’s performance and retraining is recommended when jitter conditions change.

3.4 Summary and Critical analysis

This chapter covers different dimensions of the related work and literature, around the

Thesis goals. We report different Tor de-anonymization attacks and traffic correlation

techniques (section 3.1), in a taxonomy that covers different attack types, with particular

attention to de-anonymization approaches based on traffic-correlation and watermark-

ing techniques and tools (particularly addressed in section 3.1.3). Among these attacks,

more particularly related to the thesis goal, we noticed the most promising and effec-

tive state-of-art techniques (described in section 3.3) with tools based on deep learning

of traffic properties [50, 67] that can be applied to Tor-traffic de-anonymization goals,

28

3.4. SUMMARY AND CRITICAL ANALYSIS

potentially exploitable by global adversaries. These techniques, particularly the ones

using convolutional neural networks [50, 67], are inspiring solutions to build better traf-

fic de-anonymization tools. Moreover, these tools can be used in scenarios of traffic

analysis conducted by state-level or cooperative global-level adversaries focused on the

de-anonymization of users and Tor onion-protected services, during sessions in which

such users interact with the targeted services. However, such techniques can have issues

dealing with the trade-off on the efficiency and the effectiveness of the detection ability,

for real-time and high volumes of inspected traffic flows from multiple probing locations.

Furthermore, these discussed state-of-the-art techniques and tools will be particularly

interesting when analysing ways to build traffic correlation tools deployed in test-bench

environments, as a way to evaluate some recently proposed solutions for Tor strengthen-

ing, used as countermeasures against traffic correlation attacks (as the ones addressed in

section 3.2.4). Among these, we consider solutions with pre-staged circuits that decouple

users from Tor Bridges or Tor input relay nodes, using K-anonymity covert circuits [51,

71].

29

4

TorMarker: System model and

architecture

The following chapter gives a conceptual description of TorMarker’s architecture and

how its different components operate.

It’s divided into 5 different sections: section 4.1 contains the tool’s macro architec-

ture and its modules; section 4.2 describes the threat model; section 4.3 covers all of

TorMarker’s components in a more in-depth design description; section 4.4 describes the

tool’s operation in a TIR environment; section 4.5 is a summary of the chapter.

4.1 Architecture overview

TorMarker is divided into 2 modules:

Watermarking module

This module’s purpose is to manipulate traffic from targeted connections, inducing a

temporal watermark, while also acting as the client that opens the connection. To achieve

this, the client’s data is sent by this module, which has previously crafted all of the

artificial delays that compose the watermark, embedding the mark into the data as it is

injected into the network.

Detection module

The detection module is responsible for detecting a watermark in a given egress Tor flow.

The detection is done through a Convolutional Neural Network(CNN), trained to detect

the intrinsic time patterns of the watermarks, which outputs the probability of a flow

being watermarked or not.

31

CHAPTER 4. TORMARKER: SYSTEM MODEL AND ARCHITECTURE

Figure 4.1: Threat model of the thesis’ case study.

4.2 Threat model

Figure 4.1 shows the setting studied in this dissertation. The Client, which is run by the

Watermarking component, has an open connection with the Custom server. This con-

nection is established over Tor and is supported by geographically distributed TIR input

circuits. Since this is a private, anonymous and low latency connection, an adversary

can only use extracted traffic features to employ an attack, payload comparisons are not

possible due to all data being encrypted.

For this case study, the adversary aims to perform a de-anonymization attack on the

connection by processing egress Tor flows arriving at the custom server. The type of

adversary we study in this context has an AS-level influence, meaning it has privileged

control or authority over different autonomous systems to listen and alter connections

that travel through these zones. Depending on the type of evaluation, covered in chapter

6, the attacker’s privilege level and influence over the network change, according to the

scenario we wish to analyse.

Nonetheless, figure 4.1 shows an overall representation of the adversary’s threat

model, where the controlled ASes are highlighted in red:

• AS-0 covers the client that the adversary attempts to de-anonymize and has partial

influence over the TIR input circuits. For this dissertation, we study a strong adver-

sary which may have enough influence over the TIR input circuits to aggregate all

traffic sent from an arbitrary connection, while having access to its whole packet

sequence. Furthermore, the attacker may also be able to implant software in the

victim’s machine which marks sent traffic, or just have the option to mark traffic

travelling through a certain TIR segment.

• AS-1 covers the other end of the connection resulting in all data arriving at the

target server being observed by the adversary.

32

4.3. COMPONENTS AND THEIR DESIGN

This attack can be characterized as an active de-anonymization attack. Connections

which pass through the attacker’s sphere of influence are eavesdropped on and manipu-

lated to carry certain patterns of watermarks. In a real setting, the marking of the traffic

can be employed in any segment of the Tir input circuits that fall inside the attacker’s

sphere of influence but in this instance, traffic is injected into the network already marked.

4.3 Components and their design

This section provides an in-depth description of the modules’ architecture and the rea-

soning behind some architectural choices.

4.3.1 Watermarking module

This module’s architecture is divided into 2 sub-modules:

• The first one is the .pcap reader. To simulate a real user connecting through an

application we used a dataset [36] of real Tor flows, stored in several .pcap files. This

sub-module reads the chosen dataset’s .pcap file iteratively, sending the packets and

the original inter-packet delay information to the other sub-module until the file

ends or the desired number of packets to be sent is reached.

• The other sub-module can be defined as the sender. Naturally, it is responsible for

sending each packet received by the sender to the chosen TIR node. Before trans-

mitting each packet, the component sleeps a certain amount of milliseconds, more

specifically, it waits for the computed artificial delay, that makes up the watermark,

plus the original IPD, related to the last packet sent.

4.3.2 Correlation module

The correlation module is composed of a convolutional neural network(CNN) which

is how the tool computes the probability of a certain flow being watermarked. The

inspiration for the model of this neural network is our implementation of Finn’s [67]

CNN, a state-of-the-art flow correlation tool with high true positive and low false positive

rates.

The goal of this neural network is to compute if a certain flow is marked by processing

its packet IPDs. This is possible due to the CNN being trained to distinguish the natural

noise of the Tor network and the artificial delays introduced by the TIR input circuits,

from the added delays which carry the watermark. After the flows are captured, the IPDs

need to be calculated from the arrival timestamps of each two packets and stored as an

array of values according to the CNN’s input structure.

The CNN’s model is described in the table 4.1 which specifies the layer type and

optimized parameters. This model was based on the network used in Finn [67] but it

33

CHAPTER 4. TORMARKER: SYSTEM MODEL AND ARCHITECTURE

Layer Details

Convolution Layer 1

of Filters : 500,
Kernel size: (1, 10),
Stride: (1,1),
Activation: Relu

Max Pool 1
Window size: (1,5),
Stride: (1,1)

Convolution Layer 2

of Filters: 100,
Kernel size: (1, 10),
Stride: (1,1),
Activation: Relu

Max Pool 2
Window size: (1,5),
Stride: (1,1)

Fully connected 1
Size: 3000,
Activation: Relu

Fully connected 2
Size: 800,
Activation: Relu

Fully connected 3
Size: 100,
Activation: Relu

Output Layer
Size: 1,
Activation: Sigmoid

Table 4.1: Model of the correlation module’s neural network.

is optimized to our implemented watermarks and data type. It features 2 convolutional

layers and 3 fully connected layers:

• The first layer contains a kernel with a size of (1,10) and 500 filters. It is trained

to find patterns from up to 10 consecutive IPDs. Its stride is (1,1) to cover all

combinations of 10 successive arrival timings. This layer’s purpose is to find corre-

lations between IPDs of successive packets which mind indicate the presence of a

watermark.

• The second layer has a size of (1,10) and 100 filters. It is aimed at capturing more

complex functions from the combination of the delays processed in the first layer.

• The final 3 fully connected layers process the output from the final convolutional

layer and give us a number between 0.0 and 1.0 which translates to the probability

of the processed flow being watermarked or not.

The values for the parameters specified in 4.1, such as the number of kernels or kernel

size, were optimized during the implementation phase and is further discussed in chapter

5, as well the network training methodology.

34

4.4. TORMARKER’S PURPOSE AND OPERATION

Figure 4.2: Simple model of TorMarker’s operation.

4.4 TorMarker’s purpose and operation

TorMarker’s objective lies in de-anonymizing a Tor connection between an unknown user

and server, supported by anonymous input circuits provided by TIR [72]. Our tool’s op-

eration, regarding the steps taken when attempting to de-anonymize the used endpoints

of a targeted connection, begins by watermarking traffic leaving one edge of the connec-

tion, embedding a specific watermark previously chosen. TorMarker then processes flows

captured at the other connection’s endpoint in an effort to detect this specific watermark.

In case of marked traffic being detected, the adversary has successfully linked the flows

from both endpoints and de-anonymized the targetted connection.

To successfully employ this attack, the Watermarking module is set up to open a

connection to a specified destination. The traffic that will be sent needs to be available as

a .pcap file. At the other end of the connection, traffic destined to the specified destination

is captured as a .pcap file. To evaluate if the traffic is watermarked, contiguous segments

of captured traffic, or flows, are fed to the Detection module which returns a percentage

of how probable the processed flows carry a watermark.

Figure 4.2 shows an overview of TorMarker’s operation. The Client, which is run by

the Watermarking component, opens a connection to the Target server using the TIR

input circuits. Data exchanged in this connection goes through the TIR input circuits,

into the Tor network, where it follows the relay circuit until it reaches its final destination.

4.4.1 Watermarker operation

In this thesis, to simulate an active attacker which can interrupt and manipulate traffic

in its sphere of influence, the client itself is be the watermarker simulating malicious

software operating in the target’s machine. Positioned at the client’s end of the connection,

as seen in figure 4.2. This component injects the ISCXTor2016 [36] dataset, as the client’s

data. We chose this dataset because it was publicly available for researchers and the data

was generated by capturing real outgoing Tor traffic from the user’s location, while using

35

CHAPTER 4. TORMARKER: SYSTEM MODEL AND ARCHITECTURE

several applications (Web Browsing, Email, Chat, Streaming, File Transfer, VoIP, P2P). It

is used in several works and its diversity and size are representative of real-world traffic,

making it the perfect candidate for generating artificial Tor flows.

Since this module acts as the client, it opens the connection to the custom server. After

choosing the .pcap file which contains the connection’s data and selecting the watermark

parametrizations, this module will start acting as the user’s client, sending data to the

defined destination.

TorMarker can embed two different types of time-based watermarks and allows for

different amplitude values to be chosen. They are embedded while injecting the connec-

tion’s data into the network by adding specific timing delays between certain packets

before sending them. The two implemented watermarking strategies are:

• RAINBOW, a strategy which generates the mark using cumulative delays based on

Houmansadr’s work [25]

• ICBW, an interval centroid-based watermark inspired from another Houmansadr’s

work [24]

The implementation of these strategies is described in greater detail in section 5.2.1

in the next chapter.

Detection operation

As mentioned before, this component takes a captured network flow as input and outputs

the probability of such flow being watermarked.

Naturally, the convolutional neural network needs to be trained to be able to compute

the probability. So, for this purpose, several watermarked flows and regular network

flows must be captured by a traffic analysis tool and stored as .pcap files. Flows used for

training consist of egress Tor traffic, where in this study they correspond to traffic arriving

at the mentioned target server. These flows are stored together, labelled as regular or

watermarked flows, and randomized to then be used for training the CNN. Since we use

different watermarking strategies, for the component to be able to process flows marked

with a certain watermark type it needs to be trained beforehand using flows marked the

same way, following a sort of semi-blind watermarking approach.

After training, the component is able to process network flows and output if it is

marked or not.

4.5 Summary

Chapter 4 presented the inner workings of TorMarker while also specifying the different

components’ operation and the tool’s operational context. We begin by describing the

tool’s overall architecture in section 4.1, glancing over the two tool’s modules. This is

36

4.5. SUMMARY

followed by a conceptual description of the tool’s deployment conditions (section 4.2),

where we analyse the properties of the environment and the type of privileged influence

an adversary should have when deploying TorMarker. We then went over the two compo-

nents of TorMarker (section 4.3, providing an in-depth description of the watermarking

component and the CNN that makes up the correlation component. Finally, in section

4.4, we glanced over the tool’s operation, the different watermarking parametrizations

and the necessary training process.

37

5

Prototype implementation and

environment setup

This chapter addresses the process and specifications behind the implementation of Tor-

Marker, focusing on the modules conceptually described in chapter 4. It also describes

all of the necessary adaptations we had to make to the original TIR prototype when build-

ing our test-bench environment. The prototype’s source code is available publicly in

https://github.com/MiguelSHorta/TorMarker.

It is organized in 4 sections: section 5.1 describes the TIR environment and all the

adaptations made; sections 5.2 and 5.3 specify all implementation details of its related

module. It finishes with section 5.4 where we provide a global summary of the chapter.

5.1 TIR environment

Since this dissertation is aimed at evaluating the effectiveness of the TIR input circuits, we

followed as much as possible the implementation instructions specified in Teixeira’s work

[72]. However, to properly evaluate the TIR input circuits as a more secure solution when

compared to vanilla Tor, we had to make some small changes to the inner workings of TIR

whilst maintaining the solution’s overall behaviour and watermarking countermeasures.

5.1.1 TIR nodes

Regarding the setup of the TIR nodes, we had an issue caused by the type of traffic

which is accepted by this solution. Teixeira’s implementation of TIR could only deal with

REST requests where a new SOCKS connection would be opened with the specified Tor

endpoint, for each request. This meant that only web browsing-type applications were

supported by the TIR input circuits and made it impossible to inject the ISCXTor2016
[36] dataset into the network as the user’s data. To be able to use the dataset, which

allows us to study how our tool behaves when dealing with data from different types of

applications, we reprogrammed the TIR nodes. The changes performed made sure that

TIR didn’t re-open TCP and SOCKS endpoints for each new request. Instead, the nodes

39

https://github.com/MiguelSHorta/TorMarker

CHAPTER 5. PROTOTYPE IMPLEMENTATION AND ENVIRONMENT SETUP

maintain a single TCP connection to the client and a single SOCKS connection to the

specified Tor endpoint which stays alive as long as the communication is active. This

guarantees that we are able to freely stream traffic through the open connection while

not forcing new SOCKS connections, which would stress the Tor application and cause

malfunctions.

5.1.2 Stunnel

Stunnel tunnels a connection through the TLS protocol so traffic becomes encrypted and

less distinguishable to a possible attacker. It works as a connection proxy and allows for

a wide variety of TLS parametrizations.

In the original TIR setup, Stunnels are used to tunnel the connection segments in

between the TIR input circuits multipath network, however, they were not used in this

test-bench environment. Since we are using the ISCXTor2016 [36] dataset, all artificially

generated Tor flows were already following the TLS protocol which makes the installation

of Stunnels not needed.

5.2 Watermarking module

As said in chapter 4, this module acts as the client which has an open connection to the

target server that the adversary attempts to de-anonymize. Since this module needs to

read the packets sent as user data and re-send them according to certain crafted timings,

we opted for a Java implementation (Java 17.0.1). This allowed us to have control over

packet payloads and packet arrival timings while maintaining the system’s complexity

lower.

Figure 5.1 shows a deeper look into this module’s design:

• Regarding the data we used to simulate a real connection, the ISCXTor2016 data

was divided into several .pcap representing flows from different applications. Since

we were working with small-scale timing intervals, we needed to reduce as much

as possible the overload from reading the .pcap files. To facilitate this process, we

generated an associated .csv file which contained the lengths and arrival timings of

all packets and allowed us to access these packet arrival timings in a quicker and

simpler way.

• The PcapManager class is responsible for reading the .pcap and .csv, passing the

packet payloads and timings to the Watermarker class. We used the library Pcap4J

[54] to open and inspect the .pcap files and decided to use opencsv [52] to read the

.csv files since it is one of the fastest alternatives and allows for an easy implementa-

tion. The watermark timings are also crafted in this class, right after opening .pcap
and .csv files.

40

5.2. WATERMARKING MODULE

• The Watermarker is the main class of the system. It is responsible for sending the

data through a Java.net.Socket according to the watermark-embedded timings. All

network configurations are read from a file called config.properties, present in the

same directory as the rest of the system.

Figure 5.1: Watermarking module’s design.

5.2.1 Watermark crafting

As mentioned before, TorMarker allows the traffic to be marked in two different ways.

The following 2 sections describe how we implemented these watermarking strategies in

more detail.

RAINBOW

This watermarking strategy is the implementation of [25], a robust and invisible water-

mark embedded through cumulatively adding or subtracting a chosen delay value.

Suppose we have n IPDs from unwatermarked traffic where the ith packet IPD is

represented by τui = tui − t
u
i−1, ti being the arrival timing of the ith packet (we use u to

denote unwatermarked traffic and w as watermarked). To embed this watermark, each

ith packet suffers a delay by the amount wi such that τwi = τui +wi .

To calculate wi = W0 + ai we first generate the ai calculated as ai = ai−1 ± a for each

packet where ±a will take the values +a or −a with the same probability. The amplitude,

a, is a positive parameter of the watermark chosen beforehand. Since it is not possible to

delay a packet for a negative amount of time, W0 or max amplitude is another parameter

chosen beforehand which is always bigger than the minimum value obtained from the se-

quence of ai . W0 is added as a delay to all sent packets so that wi is never a negative value.

The max amplitude value controls the overall intensity of the mark and the amplitude
controls the granularity of how the mark is applied.

Figure 5.2 shows the pattern formed by the artificial delays of the Rainbow watermark.

41

CHAPTER 5. PROTOTYPE IMPLEMENTATION AND ENVIRONMENT SETUP

Figure 5.2: Plot of the artificial delays from the Rainbow watermark.

ICBW

The ICBW watermark was implemented based on [24]. It is presented as a variation of

an interval centroid-based watermark resistant to multi-flow attacks and a non-blind ap-

proach which allowed an arbitrary number of bits to be encoded, however, we only need to

make the watermarked traffic distinguishable from regular traffic so the implementation

can be simplified.

We begin by looking at the original IPDs of the packets which will be sent. This stream

of packets is divided into n intervals of T milliseconds, without overlapping each other.

The amplitude, represented by a, is chosen as a parameter and added as a delay to all

packets which fall inside these intervals. The result is a distinct pattern which is shown

in figure 5.3

5.3 Correlation module

All parts of this module are implemented in Python 3.6.13. The framework we used to

implement the neural network is Keras 2.6.0 [32] which is an interface for TensorFlow
2.6.2 [73]. We used a single machine running Windows 10 for both training and testing.

Since TensorFlow has advanced support for CUDA-enabled GPUs, we set up a Nvidea

RTX 2070 to run all network-related computations, substantially improving training and

prediction times.

To implement the CNN’s model we used the layer interface of Keras which, in com-

parison to TensorFlow’s, it allows for a simpler implementation with much better code

readability.

42

5.3. CORRELATION MODULE

Figure 5.3: Plot of the artificial delays from the ICBW watermark.

5.3.1 Training

The network is trained according to the watermark it will detect and the amplitude used

when crafting it. It requires 2 types of traffic flows:

• Regular traffic flows: sequences of packets from regular network behaviour which

in this case will be data from the chosen dataset.

• Watermarked flows: traffic which is already marked with the same watermark the

tool is attempting to detect.

The training dataset has the same proportion of regular and watermarked flows.

In table 5.1 are specified the main training parameters:

• The optimizer is the algorithm which updates the network’s weights proportionally

to the learning rate to minimize the model’s loss. Our model uses the same optimizer

used by Finn: Adam [34], a gradient descent-based algorithm well known for its use

in neural networks due to its efficiency and scalability.

• The loss function is the function used to calculate the model’s error regarding the

predicted and expected results after processing the training dataset. Since our

model classifies data in two possible classes, regular flow or watermarked flow, the

only suited loss function would be binary cross entropy.

• The Learning rate is the rate of how much the network’s weights change in each

update and the Epochs value is the number of times the model processes the whole

training set. We used values seen in works like Finn and DeepCorr as a starting

point and fine-tuned them to the data used.

43

CHAPTER 5. PROTOTYPE IMPLEMENTATION AND ENVIRONMENT SETUP

Parameter Values

Optimizer Adam

Loss Function Binary cross entropy

Learning rate 0.0001

Epochs 200

Table 5.1: Training parameters.

Number of layers: FPR TPR ACC

1 Layer (size 100) 0,4079 0,6593 0,6266

2 Layers (sizes 800,100) 0,4378 0,8312 0,6927

3 Layers (size 3000,800,100) 0,3555 0,8145 0,7250

Table 5.2: Validation set results when performing fully-connected layer optimization.

5.3.2 Parameter optimization

To fine-tune the network’s hyperparameters we trained the network with generated sam-

ples of regular traffic and traffic watermarked with different watermarking strategies

however values shown in the following tables are taken from processing flows embedded

with an early-stage RAINBOW watermark.

Our aim was to create a precise tool that provides accurate but most importantly

reliable results. To maximize the tool’s reliability, when optimizing the CNN we focused

on having a lower false positive rate(FPR) and then a higher overall accuracy and true

positive rate(TPR).

Using Finn’s kernel size and the number of filters as a starting point, we worked

through several models tweaking the hyperparameters according to the results obtained

for the validation set.

Firstly, we optimized the amount of fully connected layers the model should finish

with. As shown in table 5.2, the network displayed the lowest FPR and highest accuracy

when using 3 fully connected layers. The size of each layer was inspired by DeepCorr’s

model [50] because, in the original work, the fully connected part of the model shares the

same purpose as this one.

We then compared results when changing the number of filters used by the 2 initial

convolutional layers obtaining table 5.3. It shows better overall values when using 500

and 100 filters in the first and second convolutional layers, respectively. Higher values

caused the model to overfit the training set.

We also experimented with different Kernel sizes, table 5.4. The results didn’t vary

significantly although the original sizes for Finn’s model ended up working the best

overall.

This optimization phase resulted in the current refined model of TorMarker’s neural

network shown in table 4.1.

44

5.4. SUMMARY

Number of filters FPR TPR ACC

1st layer: 200, 2nd layer: 50 0,1530 0,8474 0,8393

1st layer: 500, 2nd layer: 100 0,0816 0,8703 0,8937

1st layer: 600, 2nd layer: 150 0,1016 0,8764 0,8906

Table 5.3: Validation set results when optimizing the filter numbers of the convolutional
layers.

Kernel sizes FPR TPR ACC

1st kernel: (1,20), 2nd layer: (1,20) 0,1770 0,7758 0,7969

1st kernel: (1,10), 2nd layer: (1,10) 0,0816 0,8703 0,8937

1st kernel: (1,10), 2nd layer: (1,5) 0,0875 0,9240 0,9203

1st kernel: (1,5), 2nd layer: (1,5) 0,0951 0,8919 0,8984

Table 5.4: Validation set results when optimizing kernel sizes of the convolutional layers.

5.4 Summary

In chapter 5 we have described the overall implementation process behind the creation

of TorMarker, as well as some adaptations that had to be the TIR prototype. We began by

going over the changes regarding the TIR prototype’s operation and the covert channels’

parametrizations (section 5.1). We then started specifying the implementation process be-

hind the prototypes’ modules, first going over the Watermarking module’s used technolo-

gies, the system’s internal architecture and the logic behind the watermark types (section

5.1). In the final section 5.3, we specified the CNN’s layers and their parametrizations, the

training process of it, and finishing with the layers and hyperparameters optimization.

45

6

Experimental evaluation

In order to validate our tool’s effectiveness, we needed to perform extensive experimental

evaluations simulating real-world scenarios to obtain results that would mirror a real

deployment. This chapter will cover all evaluations performed on our tool and present

the obtained effectiveness and performance results.

This chapter will first cover the evaluation methodology in section 6.1 where we spec-

ify the different scenarios in which TorMarker was deployed and evaluated. Sections 6.2,

6.3 and 6.4 describe the results of TorMarker’s evaluation regarding it’s effectiveness and

reliability when deployed in different conditions. Section 6.5 presents the tool’s time per-

formance evaluation taking into account the size and amount of packets used for training

and testing. Then we have section 6.6 which sums up the main findings discovered in

the previous sections. This is followed by a comparative analysis of TorMarker and the

most influential state-of-the-art tools for flow correlation, in section 6.7. To conclude the

chapter, we have section 6.8 which presents an overall summary.

6.1 Evaluation methodology

As mentioned before, we aimed to build a tool which can confidently and precisely iden-

tify timing-based watermarks carried by traffic flows within a reasonable processing time.

To assess TorMarker’s: effectiveness when embedding different watermark types in Tor

traces; accuracy regarding the detection of said watermarks’ presence; and performance

of the prototype; we conducted extensive evaluations on our tool by deploying it in a

controlled environment where we ran the tool through different scenarios emulating

real-world cases.

6.1.1 Environment and scenario specification

The environment was composed of 4 machines in total. The main machine was running

a Nvidea RTX 2070 with 8GB VRAM, an AMD Ryzen 5 CPU with 6 cores at 3.80 GHz

and 16GB of RAM. This machine ran both components of the tool, was situated in Lisbon

and had access to a bandwidth of 60Mbps. The other 3 machines had Intel CPUs with

47

CHAPTER 6. EXPERIMENTAL EVALUATION

8 cores at 2.40 GHz, 32GB of RAM and a bandwidth of 2Gbps. Of these 3, the one

situated in London UK hosted the target server for all connections and the other, situated

in Strasbourg FR and Gravelines FR, hosted the TIR nodes.

To fully evaluate TorMarker’s precision and effectiveness, we came up with 3 main

scenarios with a few ramifications that allowed for the tool to be studied under varying

conditions regarding the attacker’s strength, the distance of the connection and the path

followed by the traffic.

Tor vanilla scenario evaluation

For this scenario, as shown in 6.1, the client opens a SOCKS connection through the Tor

network to the target server without any support from TIR input circuits. It serves as

a control scenario so we know the precision of the tool when deployed in an environ-

ment without any countermeasures against watermarking, other than Tor’s natural jitter.

Other than serving as a base comparison for tougher scenarios, the Tor vanilla scenario

evaluation also provides results which can be compared to other state-of-the-art flow

correlation tools that focus on de-anonymizing vanilla Tor endpoints, providing further

analysis regarding TorMarker’s validation.

This scenario simulates a type of adversary which targets a vanilla Tor connection

and has enough network influence to listen and manipulate segments of both ends of the

connection. The test set has the same amount of regular flows as watermarked flows.

TIR scenario evaluation

For this second scenario, the connection is supported by TIR input circuits where the

client connects to a TIR node which relays traffic to the Tor network destined to the target

server. In this case, in addition to Tor’s jitter, TIR has countermeasures to watermarking

and traffic has to follow a bigger path with one extra stepping stone. This countermeasure,

implemented in all TIR nodes, consists of storing packet arrival timings observed earlier

in the same connection and adding them in a randomized fashion, as additional artificial

delays.

Figure 6.1: Model of the connection used in Tor vanilla scenario.

48

6.1. EVALUATION METHODOLOGY

Figure 6.2: Model of the connection used in the TIR sub-scenario 1.

This scenario simulates a real-world attack employed by an adversary which is strong

enough to aggregate the traffic partitioned by the different input circuits. This means

that all flows from the victim’s connection are watermarked even if sent through different

TIR segments. For this evaluation, much like the first one, we want to assess the tool’s

effectiveness so the test set is equally populated with regular and watermarked flows.

In light of other works that perform evaluations regarding their tool’s adaptability

when correlating flows from different Tor circuits [50], for this scenario, we performed

two types of evaluations on TorMarker.

• Sub-scenario 1 - as shown in figure 6.2, the traffic flows for training (represented

in orange) and testing (represented in blue) of regular and watermarked traffic

were captured from a connection using the TIR node in Strasbourg. This helps the

performance of watermark detection since all flows go through the same Tor circuits

and the same TIR entry node and should follow similar jitter conditions.

• Sub-scenario 2 - as shown in figure 6.3, the training flows (represented in orange)

are generated from a connection supported by the Strasbourg TIR node and the

testing flows (represented in blue) from a connection using the Gravelines TIR node.

In comparison to the first one, this scenario should produce closer results to the

real-world deployment of our tool because the processed flows are generated from

diverse locations and circuits, which varies the jitter conditions they are exposed to.

TIR unaggregated flows evaluation

After assessing the tool’s effectiveness in the first two scenarios, we now change the

focus of our evaluations to how the tool’s reliability and usefulness scales with different

numbers of TIR nodes. The best watermarking parametrizations will be used to test how

the tool performs when de-anonymizing a connection supported with K input circuits.

49

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.3: Model of the connection used in the TIR sub-scenario 2.

The adversary simulated by this evaluation is unable to aggregate the flows being

partitioned by the several input circuits. It is only able to watermark flows from one

segment of an entry node while listening to the partitioned connection as it arrives in the

target server.

Following TIR’s original evaluations [72], TorMarker will perform predictions from

4 different test sets where each one corresponds to a setup with 1, 2, 3 and 4 TIR nodes.

Figure 6.4 shows a representation of this scenario when TorMarker is deployed against

a 3 TIR setup. Since the prototype swaps entry nodes in a constant time interval, we

will assume that each TIR processes the same amount of flows, resulting in a connection

partitioned equally through the input nodes. This behaviour is reflected in the test set,

the ratio of regular to watermarked flows varies accordingly to the amount o TIR nodes

used because the adversary is only able to watermark the flows that pass through one of

the entry TIR nodes.

The 4 test sets contained a total of 100 flows each, divided as such:

• 1 TIR setup - all 100 flows are watermarked.

• 2 TIR setup - 50 flows are watermarked and the other 50 are regular flows.

• 3 TIR setup - 34 watermarked flows and 66 regular flows.

• 4 TIR setup - 25 watermarked flows and 75 regular flows.

6.1.2 Methodology and metrics

Watermark variations and flow size

TorMarker was deployed in all the aforementioned scenarios and evaluated according to

its effectiveness. To better understand how the tool’s predictions vary proportionally to

50

6.1. EVALUATION METHODOLOGY

Figure 6.4: Representation of a TorMarker deployment in a 3 TIR setup.

the size of the flows, we performed predictions of 50, 100 and 150 packet-sized flows

for the first two scenarios. Different types of traffic have different frequencies of packets

which means analysing the trade-off between flow size, FPR and accuracy might show

us better strategies for watermark detection. For 50 packet-sized flows, the kernel sizes

shown in table 4.1 of the convolutional layers can’t process flows that small so they were

changed to a size of (1, 5) in both layers.

Regarding the watermarks, to understand the effectiveness of both strategies:

• ICBW watermarks were tested with amplitude values of 40ms, 80ms and 120ms in

the TIR scenario evaluation. We only tested amplitude values of 40ms and 80ms in

the control scenario because testing higher amplitudes, which correspond to more

robust marks, would be unnecessary regarding the lack of countermeasures. This

allowed us to save time since dataset generation is a very time-consuming process;

• RAINBOW watermarks were tested with a constant max amplitude value of 80 and

varying amplitude values of 10 and 40. Only varying the amplitude will let us know

which is the best granularity of delays applied in this watermarking strategy while

also making it possible to be compared to the best parametrization of the ICBW

watermark.

The watermarking detection for the first two scenarios was evaluated according to two

metrics: false positive rate(FPR) which refers to the number of regular flows identified

as watermarked flows and the global accuracy of the predictions. Since our priority is

to build a tool with a low rate of mislabelled flows, we can verify the model’s reliability

through the FPR, while observing its overall performance through the accuracy metric.

As for the third scenario, we didn’t use false positive or accuracy rates. We have an

unbalanced test set with a varying ratio of marked and regular flows, the ratios used

previously wouldn’t provide useful information regarding this scenario. Instead, we

used the precision metric which provides the necessary information to understand at

51

CHAPTER 6. EXPERIMENTAL EVALUATION

what point the tool loses its reliability, given that it shows the ratio of correctly labelled

watermarked flows to all flows labelled as watermarked.

Dataset generation and partitioning

Regarding the dataset generation, we wanted to recreate real Tor and TIR flows as close

as possible since we aim to evaluate the effectiveness of embedding and detecting wa-

termarks in different network conditions. So, as mentioned before, we replayed real Tor

traces into our controlled environment using the dataset ISCXTor [36]. After these traces

are captured arriving at the target server, we compiled them into different datasets of

real tor traces partitioned according to the scenario followed. Furthermore, we generated

these evaluation datasets with two types of application data: Skype traffic and P2p traffic.

This allows us to study the behaviour of the tool when dealing with data with different

properties. For example, as shown in figure 6.5, P2p traffic has a higher frequency of

packets per second which translates to lower IPDs but less consistency when compared

to Skype traffic.

For each watermark tested with a specific amplitude, we generated a dataset with an

average of 70K packets, where the training set is equally populated with regular and

watermarked traffic. This dataset is split into 70% for training and 30% for testing.

Performance

For the performance evaluation, we analysed the tool’s training time, the times it takes

to be ready to perform predictions, and testing time, the time it takes to perform those

predictions, comparing these timings to the flow size used.

Figure 6.5: Plots of the natural IPDs found in regular flows from Skype traffic, left, and
P2P traffic, right.

52

6.2. TOR VANILLA SCENARIO EVALUATION

6.2 Tor vanilla scenario evaluation

This section documents the evaluations done on TorMarker when following the Tor vanilla
scenario. This evaluation covers a scenario where there are no countermeasures to flow

watermarking other than the natural jitter of the Tor network, caused by its onion routing

architecture. It will analyse a control scenario, providing us with base results to be

compared to the other evaluations, while giving us an idea of how the tool is effective

when attempting to de-anonymize a vanilla Tor connection.

Skype traffic

Figure 6.6: Plots obtained from watermarked flow detection of Skype Tor traffic, following
scenario 1

Figure 6.6 shows two plots for our tool’s FPR and accuracy when tested with Skype

flows. The graphs clearly show that the ICBW watermark performed better in comparison

to the Rainbow mark. When crafted with an amplitude of 80ms (green line), it reached an

FPR of 2.5% and the accuracy was 95%. Such strong results were expected since there are

no countermeasures to watermarking in this scenario, as explained before. Furthermore,

the parametrization with the biggest amplitude got the best results because in the ICBW

watermark the ampitude is directly correlated with the mark’s intensity and consequently

with its distinguishability.

It is also worth mentioning that the Rainbow watermarked performed better when

the mark was applied with a smaller granularity, amplitude value of 10ms, obtaining an

FPR of 9.8% and accuracy of 87.5% which is practically the same performance obtained

by the ICBW mark with an amplitude of 40ms.

Finally, we can see that bigger flows provide a proportionally better prediction which

is expected because having more packets naturally helps the detection of watermarking

patterns. This observation should remain consistent throughout the rest of the evalua-

tions.

53

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.7: Plots obtained from watermarked flow detection of P2p Tor traffic, following
scenario 1

P2p traffic

Moving on to P2P traffic, figure 6.7 plots the aforementioned metrics for predictions of

P2P flows. Overall, when compared to Skype traffic, these graphs show us slightly worst

results regarding false positive rates for both marks. When looking at the accuracy, the

Rainbow watermark shows similar rates but the ICBW strategy’s results drop substan-

tially which leads us to believe that P2P traffic impairs the detectability of the ICBW

watermark. In a more specific analysis, the ICBW watermark continues to show better

results in the FPR metric with rates up to 4.6% but fell short in accuracy when compared

to the Rainbow mark which obtained an accuracy of 88.9% when using 10ms of amplitude,

compared to an accuracy of 75% from the ICBW watermark. This is consistent with our

last observation about the detectability of the ICBW mark and shows that the Rainbow

watermark can potentially perform better in tougher scenarios when using this type of

traffic.

6.3 TIR scenario evaluation

This section will present the results obtained from the TIR scenario evaluation. Our aim

here is to assess the effectiveness of our tool in embedding different watermarks with

diverse parametrizations and the consequent detection of said watermarks on the other

end of the connection. As mentioned in section 6.1.1, the adversary we emulate in this

scenario has enough influence to aggregate all flows partitioned through the TIR input

circuits, being able to completely watermark all of them.

Skype traffic

Sub-scenario 1

Firstly we will analyse the results obtained from processing the Skype traffic flows, shown

in the plots of figure 6.8, where training and test flows are generated from the same TIR

54

6.3. TIR SCENARIO EVALUATION

Figure 6.8: Plots obtained from watermarked flow detection of Skype Tor traffic, following
sub-scenario 1

entry node. This specific sub-scenario aims to obtain an overall idea of how robust the

different watermarks are when confronted with TIR’s countermeasures.

As shown in the graphs, the ICBW watermark using an amplitude of 120ms obtained

the best results in both metrics. With an FPR of 4.8% and an accuracy rate of 96.7%, it

showed better results than its other parametrizations as expected. The rainbow water-

mark using an amplitude of 10ms is still consistently better than its other parametrization,

obtaining false positive and accuracy rates of 13.7% and 90.4% respectively. In this in-

stance, this Rainbow parametrization obtained better rates in both metrics than the ICBW

parametrizations with amplitude levels of 40ms and 80ms which tells us that this water-

mark deals better with TIR countermeasures than the less robust versions of the ICBW

watermarks.

Figure 6.9 plots the results from this scenario (solid lines) and the control scenario

(dotted lines). Both watermarks have worse FPR, explained by the lack of countermea-

sures to watermarking in the control scenario. Furthermore, the Rainbow mark loses

less FPR than the ICBW watermark and it gets even better accuracy levels in this sce-

nario which validates the deduction that this watermark type works better against TIR’s

artificial jitter.

Sub-scenario 2

The plots in figure 6.10 show the results of the two best watermarking parametrizations

when applied in both sub-scenarios specified in section 6.1.1. The dotted lines are the

results from TorMarker when trained and tested with different entry nodes and the con-

tinuous lines represent the formerly analysed sub-scenario. The rationale behind the

evaluation of TorMarker in this second sub-scenario is to assess how well the tool and its

different parametrizations behave when tested with more diverse data.

In this sub-scenario, since the test data is routed through a whole different path and

relayed through different circuits than the training one, the performance drop shown in

the graphs is expected. The ICBW watermark got a non-substantial improvement in FPR

55

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.9: Plots obtained from watermarked flow detection of Skype Tor traffic, control
scenario comparison

than the last sub-scenario in all three packet sizes but lost a lot in accuracy obtaining a

maximum percentage of 85.4%. The Rainbow watermark only performed slightly worse

obtaining a minimum FPR of 14.3% and an accuracy of 89.8%. The fact that the Rainbow

watermark only obtained a slight drop in performance suggests that the watermark is

more robust to different jitter conditions than the ICBW strategy.

Figure 6.10: Plots obtained from watermarked flow detection of Skype Tor traffic, sub-
scenarios comparison

The most aggressive parametrization of the ICBW watermark obtained the best results

in the toughest scenario with an FPR of 4.4% and an accuracy rate of 85.4%. TorMarker’s

watermarks should be robust against network jitter and in this case TIR’s additional

delays. However, the trade-off between robustness and invisibility is an important key

to building a good watermark [67]. When our tool obtains such a substantially low FPR

against dedicated countermeasures and volatile jitter conditions, it leads us to believe

that an amplitude of 120ms in the ICBW watermark strategy is excessive and might hurt

the watermark’s invisibility properties.

56

6.3. TIR SCENARIO EVALUATION

P2P traffic

Sub-scenario 1

Following the same experiment order, figure 6.11 plots the false positive and accuracy

rates obtained by our tool after processing P2P flows from sub-scenario 1.

Figure 6.11: Plots obtained from watermarked flow detection of P2P Tor traffic, following
sub-scenario 1

As shown in the graphs, the first plot shows that both parametrizations of the rainbow

watermark and the most robust version of the ICBW mark obtained practically the same

FPR and close accuracy percentages. However, the ICBW watermark was still slightly

ahead in both metrics obtaining values of 21.3% and 89% in FPR and accuracy respec-

tively. The ICBW parametrizations with lower amplitudes of 40ms and 80ms, obtained

substantially bad results with FPRs over 40% which shows us amplitudes under 80ms are

clearly not robust enough for this scenario and traffic type. These watermarks are being

destroyed by the jitter and artificial delays added by TIR and the system is incapable of

detecting them efficiently.

Figure 6.12: Plots obtained from watermarked flow detection of P2P Tor traffic, control
scenario comparison

Moving on to the control scenario comparison, figure 6.12 shows plots comparing the

results obtained in the control scenario (dotted lines) and this scenario (continuous line).

57

CHAPTER 6. EXPERIMENTAL EVALUATION

Much like we saw in the Skype traffic analysis, both marks obtained worse metrics in this

scenario, as expected. For this traffic type, it is even more evident that the Rainbow mark

is more robust against TIR’s countermeasures by showing an FPR increase from 8.7%

to 22.9%, a substantially smaller difference than the ICBW mark which showed an FPR

increase from 3.8% to 38.8%.

Sub-scenario 2

Although the two Rainbow parametrizations obtained very similar results in the first

sub-scenario, making it logical to compare them in this scenario, we opted to not show

the results from the 40ms parametrization since the plots would become too difficult to

read and this parametrization attained worse results than the other Rainbow mark.

With that being said, the evaluation results from the second sub-scenario are shown

in figure 6.13. Values obtained from this second sub-scenario are represented with dotted

lines and values from the first one are shown with a continuous line. Analysing the graphs,

the ICBW watermark shows a slight drop in precision, within the expected amount. The

Rainbow mark, however, presents overall better values in this second sub-scenario and

it even surpasses the ICBW mark. The only explanation for this must rely on the volatile

jitter conditions of the Tor network when the dataset was generated. Since TIR’s coun-

termeasures are somewhat consistent, the jitter on the Tor circuits at the time must have

been substantially smaller than when the test sets for sub-scenario 1 were created.

Figure 6.13: Plots obtained from watermarked flow detection of P2P Tor traffic, sub-
scenarios comparison

To perform a final analysis of this scenario, we compared the results obtained in the

second sub-scenario by the best two parametrizations for each traffic type, as shown in

figure 6.14. TorMarker was more effective when marking and detecting Skype traffic

which tells us that embedding watermarks in traffic with a lower frequency of packets

per second results in a more reliable detection. The rainbow watermark obtained overall

better accuracy results, which means that, for different circuits, this watermark type

might potentially be more resistant to perturbations.

58

6.4. TIR PARTITIONED FLOWS EVALUATION

Figure 6.14: Plots obtained from watermarked flow detection of Skype and P2P Tor traffic

6.4 TIR partitioned flows evaluation

The purpose of this evaluation, as specified in section 6.1.1, lies in understanding the

reliability of TorMarker when confronted with a connection partitioned through K input

circuits. This scenario will emulate a real TIR connection where traffic from the targetted

connection is partitioned through several different circuits.

Our tool was tested using the two watermarking parametrizations which obtained the

best results in the former evaluations: the ICBW watermark, with an amplitude of 120ms;

and the Rainbow watermark, with an amplitude of 10ms. Regarding the flows used, we

decided to use traffic flows generated according to sub-scenario 2 since it will give us the

results that best translate into a real-world instance.

Figure 6.15: Plots showing the precision rate obtained by TorMarker against different
numbers of TIR nodes.

Figure 6.15 shows the precision rates obtained by TorMarker when attempting to

detect watermarked flows, in a connection partitioned by a varying number of TIR nodes.

Overall, the predictions made on Skype flows obtained better precision when compared

to the P2P traffic type which makes sense according to previous evaluations. In both

59

CHAPTER 6. EXPERIMENTAL EVALUATION

Flow size: Training time in seconds: Testing time in seconds:

150 6,174 0.144

100 6,214 0.221

50 7,036 0.120

Table 6.1: Training and testing times for 70K packets.

traffic types, precision rates drop when more TIR nodes are used which is expected since

with more nodes we have more regular flows leading to more false positive predictions.

When using a 2 TIR setup, both watermarks for both traffic types were able to obtain rates

over 80% and for the 3 TIR setup, only the ICBW mark in P2P flows couldn’t obtain a

precision score over 70% and the best score was 86.2% obtained by the ICBW watermark

for Skype traffic. With the 4 TIR setup, the ICBW watermark with Skype traffic got a

precision rate of 75% and was the only mark to obtain a score over 70%.

Concerning these observations, it is clear that a TIR setup with 1 or 2 nodes still

allows TorMarker to perform predictions with good confidence and a 3 TIR setup starts

to substantially lower the tool’s precision. With 4 nodes, to perform predictions with

decent precision, the watermark and its parametrizations need to be specially chosen

according to the traffic type present in the connection the tool is attempting de-anonymize.

Even if the tool is against setups with as many as 4 TIR, performing various captures for

TorMarker to process will allow the attacker to detect enough watermarked flows to

confidently de-anonymize targeted connections in a reasonable observation time.

These results show that TIR setups with up to three nodes are vulnerable to Tor-

Marker’s watermarking attacks, and four TIR setups are also weak against this approach.

We recommend that, in order to guarantee K-anonymization, the focused TIR solution

must be deployed with at least four nodes and it’s watermarking countermeasures must

be updated to resist more robust watermark types.

6.5 Performance evaluation

As we mentioned in section 6.1.2, we’re using 70K packets to perform each evaluation.

From these, around 20K are used for testing and the other 50K for training. The training

test itself is divided 75% for training the model and 25% for validation but to facilitate

the observations we will not distinguish these subsets of the training set.

Table 6.1 presents the timings obtained when TorMarker is trained with 50K packets

and performs predictions over 20K packets, amounts used in the previous evaluations.

Regarding the training times, we can see that for smaller flow sizes the network takes a

little bit more time to converge and finish training because smaller flow sizes will translate

into more flows extracted from the dataset which are then processed. Testing times are

not substantially different and don’t seem to follow a pattern other than being extremely

short.

60

6.6. MAIN FINDINGS

Overall, these times are very short. The CNN model is very light since we use few

layers and only have to process one feature type, using a powerful GPU to perform all

calculations allows for training and testing times to be very small. We understand that

training TorMarker with only 50K packets for each evaluation may limit our tool’s scores

since reaching amounts such as 100K or even 200K packets for training may substantially

enhance the tool’s reliability and effectiveness. Despite that, we are pretty confident

about the results obtained from TorMarker and by not generating bigger training sets for

each evaluation, we were able to test more watermark types and parametrizations and

how these dealt with different types of traffic.

6.6 Main findings

Taking into account the results from the described experimental evaluations:

• TIR’s countermeasures against timing correlation attacks proved to be more effec-

tive on flows originating from Skype Tor traffic. Nonetheless, TorMarker performed

considerably better when watermarking and detecting watermarks from Skype-type

flows.

• The ICBW watermark showed good results, specifically against Skype traffic, obtain-

ing a high detection accuracy while maintaining low false positive rates. However,

the more robust parametrizations of this watermark might be hurting its invisibility

properties in exchange for good distinguishability.

• The Rainbow watermark obtained better results when its parametrizations followed

a lower granularity with lower amplitude values. This watermark also showed good

compatibility with P2P traffic flows when compared to its alternative.

• When confronted against partitioned flows, TorMarker was successful when at-

tempting to detect watermarked flows and presented reasonable precision results

from processing flows from a 3 TIR setup. To accomplish the same in 4 TIR setups

was only possible with specific parametrizations for specific traffic types.

• Training and testing times are short because the model used in the detection compo-

nent is light and the GPU used to perform these tasks was powerful. Furthermore,

since train and test times were substantially short, training TorMarker with big-

ger and more diverse datasets is a feasible possibility and might allow the tool to

perform with better scores.

61

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.16: Plots showing the false positive and true positive rates obtained by Tor-
Marker, Finn and DeepCorr.

6.7 State-of-the-art tools comparison

Considering all the research work done previously to the implementation of TorMarker,

there are two state-of-the-art tools that should be analysed performance-wise in a com-

parative matter to our tool. These flow correlator tools are DeepCorr [50], which works

through deep learning correlations of traffic properties, and Finn [67], which performs the

detection of watermarked flows and subsequent extraction of watermark-embedded data.

Both of these tools are recent implementations that obtained remarkable performance

results when compared to earlier works, proving that a comparative analysis between

them and TorMarker should contribute to the validation of this tool.

In figure 6.16 are presented two plots with the metrics obtained by the three tools, FPR

on the left and TPR on the right. These metrics were extracted from the official studies

of both tools [50, 67]. Finn metrics were explicit however, for DeepCorr rates, the only

documented flow sizes appropriate for this comparison are of 100 and 200 packets and

since the work doesn’t present fixed FPRs we retrieved approximate values for a target

TPR that was closest to TorMarker’s results because our tool is the focus of comparison.

Regarding the comparison analysis, we can see that Finn leads both in FPR and TPR for

flow sizes of 150 and 100 obtaining FP rates as low as 1.5% and TP rates up to 97.0%. For

flows of size 50, TorMarker was able to achieve the better rates than Finn meaning it has

potentially the best performance for small-sized flows. If we look at DeepCorr’s rates for

200 packet-sized flows, it got an approximate FPR of 3.5% for a target TPR of 93% (since

our tool achieved a TPR of 92.7 for 150 packet-sizes flows we extracted DeepCorr’s results

regarding a TPR as close as possible to TorMarker’s). Compared to TorMarker’s FPR of

2.5% with a TPR of 92.7%, for processing flow sizes of 150 packets, we can conclude that

our tool managed to achieve slightly better results than DeepCorr, presenting a smaller

FPR, for approximately the same TPR, for the detection of 50 packets smaller flow sizes.

62

6.8. SUMMARY

However, for flows of size 100, DeepCorr achieves a substantially lower FPR of 4.0%

when compared to TorMarker’s rate of 7.4%. It is important to mention that both of these

state-of-the-art tools learn from training datasets containing up to 500K packets, which

compared to the 50K packets used to train TorMarker shows a solid justification for these

results. A more robust training set would possibly allow for TorMarker to surpass Finn’s

achieved metrics.

In conclusion, this comparative analysis shows that TorMarker is capable of competing

with two of the best flow correlation tools in the state-of-the-art, DeepCorr and Finn, and

it could potentially outperform them if a bigger training set is supplied.

6.8 Summary

Chapter 7 presented all evaluations performed on TorMaker, validating this prototype

as an effective and reliable de-anonymizer of Tor flows. It started by describing the eval-

uation methodology used for all experimental testing (section 6.1) . Firstly, the section

glanced over the specifications of the machines that make up the full environment and

then provided with a description about the full extent of the evaluations, going over the

experimental roadmap and the several different scenarios it followed. It also provided in-

formation about the testing methodology and metrics used to base such evaluations. The

sections that followed present the evaluation results of TorMarker against each scenario:

the first section described the evaluation against Tor vanilla flows (section 6.2), providing

with results that served as the base for the comparative analysis against tougher scenarios

and other tools; the two sections that followed contained the most relevant evaluations of

the dissertation since they described the tool’s experimental results against TIR, without

traffic partitioning (section 6.3) and with traffic partitioning of the targeted connection,

performed by varying numbers of TIR (section 6.4). This last section also provided a

security analysis of TIR with recommendations for a secure deployment of this prototype

against watermarking attacks from TorMarker. Section 6.5 analyses the performance of

TorMarker regarding processing times of the training and testing stages. The main find-

ings of all experimental evaluations were summed up in section 6.6 and were followed by

the final section of the chapter that performs a comparative analysis of TorMarker against

other relevant state-of-the-art tools (section 6.7).

63

7

Conclusions

To maintain social and political dominance, totalitarian regimes often implement strict

approaches towards blocking content being shared that goes against their interests. Cir-

cumvention strategies for these behaviours are necessary to provide some form of uncen-

sored means of communication to people affected by these abusive governments. The

Tor network was created precisely with this intent: providing everyone with access to an

uncensored internet. This voluntary-based distributed network implements a protocol

that allows for private, anonymous, low-latency communication through the world wide

web. Despite all efforts devoted to reinforcing this network’s security, many types of

attacks leveraging AS-level influence have been successfully deployed, proving it is not

invulnerable.

In this dissertation, we have designed a test-bench environment and prototype to

evaluate a candidate Tor reinforcement, offering valuable information regarding the se-

curity provided by K-anonymity enforcement solutions. TorMarker is a system capable

of embedding timing watermarks in inbound Tor traffic and performing the detection of

said watermarks in outbound Tor traffic, consequently de-anonymizing the watermarked

connection. Deploying our tool in a Tor environment, reinforced with traffic partitioning

through K-input circuits, allowed us to perform security evaluations on the TIR prototype:

a Tor reinforcement which provides K-anonymity through the addition of TLS tunnelled,

covert input circuits. This evaluation further elaborates TIR’s security analysis by testing

the prototype against new approaches based on proactively induced traffic watermarking

and watermark detection through ML&DA of marked Tor traffic.

7.1 Main contributions

The main contributions of this dissertation were as follows:

• We designed and implemented TorMarker, a system capable of de-anonymizing

connections made over the Tor network, and deployed it in our test-bench environ-

ment that comprehends Tor connections supported by the Tor-reinforcement and

K-anonymization solution: TIR. TorMarker detects actively embedded watermarks

65

CHAPTER 7. CONCLUSIONS

in Tor flows leveraging state-of-the-art techniques, such as traffic time-based water-

marking and deep learning of traffic time properties through convolutional neural

networks.

• We performed experimental evaluations on the full extent of TorMarker’s water-

marks and their different parametrizations against vanilla Tor flows and TIR-supported

Tor flows. We showed that the tool can perform the detection of different types of wa-

termarks embedded in two different Tor traffic types. With the proper parametriza-

tion, TorMarker obtained low false positive detection rates with good accuracy and

precision rates, in short train and test times.

• We conducted a new security analysis on TIR using state-of-the-art techniques and

recommended deployment specifications to improve the targeted Tor-strengthening

solution against our implemented tool. TIR’s traffic partitioning was tested against

the precision of TorMarker by processing flows from setups with different numbers

of TIR nodes, showing that the best watermark parametrizations were able to obtain

reasonably good precision rates in setups with up to 4 TIR.

7.2 Open issues

In the relation between the initial dissertation’s goals and the finished study, some open

issues are derived as posterior work. The most evident one was the temporal performance

analysis which could be further enriched by having larger captures. Flow generation is

very time-consuming, following performance analyses of TorMarker can focus more time

on dataset generation to obtain information regarding the trade-off between precision

scores in watermark detection and the number of flows used for training, providing new

strategies regarding the compromises that can be made to increase precision at the cost

of performance.

The second issue would be the parametrization diversity, more specifically the ro-

bustness granularity at which the watermarks are evaluated. Different network jitter

conditions require diverse levels of watermark robustness and more robustness hurts the

watermark’s unobservability properties. Testing the watermark’s robustness at a lower

granularity would further contribute to finding the ideal robustness level that achieves

reasonable precision scores while maintaining a sufficient degree of unobservability.

This issue takes us to the last point concerning the analysis of a watermark’s unobserv-

ability criteria. Further analysis of TorMarker could focus on the embedded watermark’s

unobservability level in comparison to the regular traffic used to embed the mark. To-

gether with the tool’s detection metrics, this analysis can also contribute to the calibration

of a watermark’s ideal robustness.

66

7.3. FUTURE IMPLEMENTATIONS

7.3 Future implementations

All efforts dedicated to TorMarker’s design, implementation, experimental evaluation

and background research allowed us to identify potential enhancements that could be

implemented in this prototype. They are presented in the following section:

• TorMarker’s parametrizations could be extended by enhancing the watermarking

component, allowing it to embed more watermark types. With more parametriza-

tion options, the tool should gain more adaptability and perform better against

more diverse traffic types. Extending the tool’s parametrization is also possible by

adding diversification to the nature of the watermark’s carrier, for example, the

implementation of rate-based watermarks would provide an adversary with another

attack vector potentially boosting his chances of success.

• Regarding TorMarker’s experimental evaluations, the tool’s watermarks were tested

against two types of traffic that would not suffer any content transformations. As

a way to extend our tool’s effectiveness evaluations, TorMarker watermark embed-

ding and detection could be tested against other Tor reinforcement solutions which

provide traffic morphing options, for instance, RTC traffic-based morphing chan-

nels. Since TorMarker relies on time-based carriers for embedding its watermarks,

testing this carrier type’s robustness against type-morphing traffic would contribute

greatly to understanding the effectiveness of this class of Tor reinforcement systems.

• Another enhancement of TorMarker that would greatly improve the tool’s interest in

a real-world deployment would be the implementation of real-time time connection

de-anonymization. Implementing TorMarker as a centralized system, coordinated

with strategically placed probes that perform the watermark embedding, would

provide the adversary with the ability to link Tor endpoints in real time. This

would also allow for the tool, with enough allocated resources and watermarking

probes, to watermark different Tor circuits simultaneously, which could better the

chances of watermark detection and possibly brute-force through some of Tor’s

countermeasures, such as periodic guard node rotation.

67

Bibliography

[1] M. Akhoondi, C. Yu, and H. V. Madhyastha. “LASTor: A low-latency AS-aware Tor

client”. In: 2012 IEEE Symposium on Security and Privacy. IEEE. 2012, pp. 476–490

(cit. on pp. 2, 19, 20).

[2] M. Alimardani and S. Milan. “The Internet as a global/local site of contestation:

The case of Iran”. In: Global cultures of contestation. Springer, 2018, pp. 171–192

(cit. on pp. 1, 2, 7).

[3] Y. Angel. obfs4. https://github.com/Yawning/obfs4/blob/master/doc/obfs4-

spec.txt. (Visited on 2022-02-03) (cit. on pp. 2, 12).

[4] S. Aryan, H. Aryan, and J. A. Halderman. “Internet censorship in Iran: A first

look”. In: 3rd {USENIX}Workshop on Free and Open Communications on the Internet
({FOCI} 13). 2013 (cit. on pp. 1, 2, 8).

[5] D. Barradas et al. “Poking a hole in the wall: Efficient censorship-resistant Internet

communications by parasitizing on WebRTC”. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 2020, pp. 35–48 (cit.

on p. 24).

[6] L. Basyoni et al. “Traffic analysis attacks on Tor: a survey”. In: 2020 IEEE Interna-
tional Conference on Informatics, IoT, and Enabling Technologies (ICIoT). IEEE. 2020,

pp. 183–188 (cit. on p. 14).

[7] S. Chakravarty, A. Stavrou, and A. D. Keromytis. “LinkWidth: a method to measure

link capacity and available bandwidth using single-end probes”. In: (2008) (cit. on

p. 15).

[8] S. Chakravarty, A. Stavrou, and A. D. Keromytis. “Traffic analysis against low-

latency anonymity networks using available bandwidth estimation”. In: European
symposium on research in computer security. Springer. 2010, pp. 249–267 (cit. on

pp. 13, 15).

[9] S. Chakravarty et al. “Detecting traffic snooping in tor using decoys”. In: Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer. 2011, pp. 222–

241 (cit. on pp. 19, 20).

69

https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt

BIBLIOGRAPHY

[10] D. L. Chaum. “Untraceable electronic mail, return addresses, and digital pseudonyms”.

In: Communications of the ACM 24.2 (1981), pp. 84–90 (cit. on p. 8).

[11] J. D. Clark et al. “The shifting landscape of global internet censorship”. In: (2017)

(cit. on pp. 1, 2, 7).

[12] R. Dingledine et al. “One fast guard for life (or 9 months)”. In: 7th Workshop on
Hot Topics in Privacy Enhancing Technologies (HotPETs 2014). 2014 (cit. on pp. 2, 16,

19, 20).

[13] R. Dingledine et al. “Tor: The second-generation onion router (2014 DRAFT v1)”.

In: Cl. Cam. Ac. Uk (2014) (cit. on pp. 1, 2, 9–11).

[14] J. R. Douceur. “The sybil attack”. In: International workshop on peer-to-peer systems.
Springer. 2002, pp. 251–260 (cit. on p. 16).

[15] M. Edman and P. Syverson. “AS-awareness in Tor path selection”. In: Proceedings
of the 16th ACM conference on Computer and communications security. 2009, pp. 380–

389 (cit. on pp. 19, 20).

[16] T. Elahi et al. “Changing of the guards: A framework for understanding and im-

proving entry guard selection in Tor”. In: Proceedings of the 2012 ACM Workshop on
Privacy in the Electronic Society. 2012, pp. 43–54 (cit. on pp. 2, 19, 20).

[17] N. S. Evans, R. Dingledine, and C. Grothoff. “A Practical Congestion Attack on

Tor Using Long Paths.” In: USENIX Security Symposium. 2009, pp. 33–50 (cit. on

pp. 13, 14).

[18] B Evers et al. Thirteen Years of Tor Attacks. 2016 (cit. on pp. 2, 3, 11–14, 16).

[19] D. R. Figueiredo, P. Nain, and D. Towsley. “On the analysis of the predecessor attack

on anonymity systems”. In: Computer Science Technical Report (2004), pp. 04–65

(cit. on pp. 2, 3, 16).

[20] K. Gallagher. “How Tor helped catch the Harvard bomb threat suspect”. In: (2013).

(Visited on 2022-02-03) (cit. on p. 11).

[21] S. Golkar. “Liberation or Suppression Technologies? The Internet, the Green Move-

ment and the Regime in Iran.” In: International Journal of Emerging Technologies &
Society 9.1 (2011) (cit. on pp. 1, 2, 7).

[22] A. Houmansadr and N. Borisov. “BotMosaic: Collaborative network watermark for

the detection of IRC-based botnets”. In: Journal of Systems and Software 86.3 (2013),

pp. 707–715 (cit. on pp. 17, 18).

[23] A. Houmansadr and N. Borisov. “SWIRL: A Scalable Watermark to Detect Corre-

lated Network Flows.” In: NDSS. 2011 (cit. on pp. 2, 3, 18, 25).

[24] A. Houmansadr, N. Kiyavash, and N. Borisov. “Multi-flow attack resistant wa-

termarks for network flows”. In: 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE. 2009, pp. 1497–1500 (cit. on pp. 3, 18, 25, 36,

42).

70

BIBLIOGRAPHY

[25] A. Houmansadr, N. Kiyavash, and N. Borisov. “RAINBOW: A Robust And Invisible

Non-Blind Watermark for Network Flows.” In: NDSS. Vol. 47. Citeseer. 2009,

pp. 406–422 (cit. on pp. 3, 18, 25, 36, 41).

[26] J. Huang et al. “Long PN code based DSSS watermarking”. In: 2011 Proceedings
IEEE INFOCOM. IEEE. 2011, pp. 2426–2434 (cit. on p. 18).

[27] A. Iacovazzi and Y. Elovici. “Network flow watermarking: A survey”. In: IEEE
Communications Surveys & Tutorials 19.1 (2016), pp. 512–530 (cit. on pp. 17, 18,

26).

[28] A. Iacovazzi, D. Frassinelli, and Y. Elovici. “The {DUSTER} attack: Tor onion

service attribution based on flow watermarking with track hiding”. In: 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019).
2019, pp. 213–225 (cit. on pp. 2, 3, 17, 26).

[29] A. Iacovazzi, S. Sarda, and Y. Elovici. “Inflow: Inverse network flow watermark-

ing for detecting hidden servers”. In: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE. 2018, pp. 747–755 (cit. on p. 26).

[30] A. Johnson et al. “Users get routed: Traffic correlation on Tor by realistic adver-

saries”. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security. 2013, pp. 337–348 (cit. on pp. 19, 20).

[31] J. Juen et al. “Defending tor from network adversaries: A case study of network

path prediction”. In: Proceedings on Privacy Enhancing Technologies 2015.2 (2015),

pp. 171–187 (cit. on pp. 19, 20).

[32] Keras. Keras. https://keras.io/. (Visited on 2022-02-17) (cit. on p. 42).

[33] S. Khattak et al. “SOK: Making sense of censorship resistance systems”. In: Pro-
ceedings on Privacy Enhancing Technologies 2016.4 (2016), pp. 37–61 (cit. on pp. 1,

2, 7, 8).

[34] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014) (cit. on p. 43).

[35] K. Kohls et al. “On the Challenges of Geographical Avoidance for Tor.” In: NDSS.

2019 (cit. on pp. 2, 19, 21, 22).

[36] A. H. Lashkari et al. “Characterization of tor traffic using time based features.” In:

ICISSp. 2017, pp. 253–262 (cit. on pp. 33, 35, 39, 40, 52).

[37] D. Levin et al. “Alibi routing”. In: ACM SIGCOMM Computer Communication
Review 45.4 (2015), pp. 611–624 (cit. on pp. 19, 21).

[38] B. N. Levine et al. “Timing attacks in low-latency mix systems”. In: International
Conference on Financial Cryptography. Springer. 2004, pp. 251–265 (cit. on pp. 2, 3,

14).

71

https://keras.io/

BIBLIOGRAPHY

[39] Z. Li, S. Herwig, and D. Levin. “{DeTor}: Provably Avoiding Geographic Regions

in Tor”. In: 26th USENIX Security Symposium (USENIX Security 17). 2017, pp. 343–

359 (cit. on pp. 2, 19, 21).

[40] Z. Li, R. Yuan, and X. Guan. “Traffic classification-towards accurate real time

network applications”. In: International Conference on Human-Computer Interaction.

Springer. 2007, pp. 67–76 (cit. on p. 11).

[41] Z. Lin and N. Hopper. “New attacks on timing-based network flow watermarks”.

In: 21st USENIX Security Symposium (USENIX Security 12). 2012, pp. 381–396

(cit. on pp. 25, 26).

[42] P. Liubinskii. “The Great Firewall’s active probing circumvention technique with

port knocking and SDN”. English. Master’s thesis. Aalto University. School of

Electrical Engineering, 2021, p. 65. url: http://urn.fi/URN:NBN:fi:aalto-20210

1311842 (cit. on pp. 2, 8).

[43] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/

template.pdf (cit. on p. iii).

[44] X. Luo et al. “Exposing invisible timing-based traffic watermarks with BACKLIT”.

In: Proceedings of the 27th Annual Computer Security Applications Conference. 2011,

pp. 197–206 (cit. on pp. 25, 26).

[45] A. Macrina and E. Phetteplace. “The Tor browser and intellectual freedom in the

digital age”. In: Reference and User Services Quarterly 54.4 (2015), pp. 17–20 (cit. on

pp. 2, 11).

[46] S. Matic, C. Troncoso, and J. Caballero. “Dissecting tor bridges: a security eval-

uation of their private and public infrastructures”. In: Network and Distributed
Systems Security Symposium. The Internet Society. 2017, pp. 1–15 (cit. on p. 12).

[47] P. Mayank and A. Singh. “Tor traffic identification”. In: 2017 7th International
Conference on Communication Systems and Network Technologies (CSNT). IEEE. 2017,

pp. 85–91 (cit. on p. 11).

[48] S. J. Murdoch and G. Danezis. “Low-cost traffic analysis of Tor”. In: 2005 IEEE
Symposium on Security and Privacy (S&P’05). IEEE. 2005, pp. 183–195 (cit. on

pp. 14, 15).

[49] S. J. Murdoch and P. Zieliński. “Sampled traffic analysis by internet-exchange-level

adversaries”. In: International workshop on privacy enhancing technologies. Springer.

2007, pp. 167–183 (cit. on pp. 2, 3, 14).

[50] M. Nasr, A. Bahramali, and A. Houmansadr. “Deepcorr: Strong flow correlation

attacks on Tor using deep learning”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 2018, pp. 1962–1976 (cit. on

pp. 2, 3, 15, 27–29, 44, 49, 62).

72

http://urn.fi/URN:NBN:fi:aalto-202101311842
http://urn.fi/URN:NBN:fi:aalto-202101311842
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

BIBLIOGRAPHY

[51] V. Nunes. “Hardening Tor against State-Level Traffic Correlation Attacks with K-

Anonymous Circuits”. MA thesis. IST, Universidade de Lisboa, 2021 (cit. on pp. 2,

3, 19, 22, 29).

[52] Opencsv. Opencsv. http://opencsv.sourceforge.net/. (Visited on 2022-02-17)

(cit. on p. 40).

[53] G. Owen and N. Savage. “Empirical analysis of Tor hidden services”. In: IET
Information Security 10.3 (2016), pp. 113–118 (cit. on pp. 2, 11).

[54] Pcap4j. Pcap4j. www.pcap4j.org/. (Visited on 2022-02-17) (cit. on p. 40).

[55] R. Pries et al. “A new replay attack against anonymous communication networks”.

In: 2008 IEEE International Conference on Communications. IEEE. 2008, pp. 1578–

1582 (cit. on p. 15).

[56] T. T. Project. AChildsGardenOfPluggableTransports. https://gitlab.torproject.

org/legacy/trac/-/wikis/doc/AChildsGardenOfPluggableTransports. (Visited

on 2022-02-03) (cit. on pp. 2, 12).

[57] T. T. Project. How to Report Bad Relays. https://blog.torproject.org/how-report-
bad-relays/. (Visited on 2022-02-03) (cit. on p. 19).

[58] T. T. Project. meek. https://gitlab.torproject.org/legacy/trac/-/wikis/doc/

meek. (Visited on 2022-02-03) (cit. on p. 12).

[59] T. T. Project. Reporting Bad Relays. https://gitlab.torproject.org/legacy/

trac/-/wikis/doc/ReportingBadRelays. (Visited on 2022-02-03) (cit. on pp. 2, 19,

20).

[60] T. T. Project. Snowflake. https://gitlab.torproject.org/tpo/anti-censorship/

pluggable-transports/snowflake/-/wikis/Technical%20Overview. (Visited on

2022-02-03) (cit. on pp. 2, 12).

[61] T. T. Project. Tor FAQ. https://2019.www.torproject.org/docs/faq.html. (Visited

on 2022-02-03) (cit. on pp. 19, 21).

[62] T. T. Project. Torproject.org Blocked by GFW in China: Sooner or Later? https://blog.
torproject.org/torprojectorg-blocked-gfw-china-sooner-or-later/. 2008.

(Visited on 2022-02-03) (cit. on p. 11).

[63] T. T. Project. What is a bridge. https://support.torproject.org/censorship/

censorship-7/. (Visited on 2022-02-03) (cit. on p. 11).

[64] D. Ramsbrock, X. Wang, and X. Jiang. “A first step towards live botmaster trace-

back”. In: International Workshop on Recent Advances in Intrusion Detection. Springer.

2008, pp. 59–77 (cit. on p. 18).

[65] J.-F. Raymond. “Traffic analysis: Protocols, attacks, design issues, and open prob-

lems”. In: Designing privacy enhancing technologies. Springer. 2001, pp. 10–29

(cit. on pp. 2, 11).

73

http://opencsv.sourceforge.net/
www.pcap4j.org/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/AChildsGardenOfPluggableTransports
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/AChildsGardenOfPluggableTransports
https://blog.torproject.org/how-report-bad-relays/
https://blog.torproject.org/how-report-bad-relays/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/ReportingBadRelays
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/ReportingBadRelays
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/Technical%20Overview
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/Technical%20Overview
https://2019.www.torproject.org/docs/faq.html
https://blog.torproject.org/torprojectorg-blocked-gfw-china-sooner-or-later/
https://blog.torproject.org/torprojectorg-blocked-gfw-china-sooner-or-later/
https://support.torproject.org/censorship/censorship-7/
https://support.torproject.org/censorship/censorship-7/

BIBLIOGRAPHY

[66] M. Reed, P. Syverson, and D. Goldschlag. “Anonymous connections and onion

routing”. In: IEEE Journal on Selected Areas in Communications 16.4 (1998), pp. 482–

494. doi: 10.1109/49.668972 (cit. on pp. 1, 9).

[67] F. Rezaei and A. Houmansadr. “FINN: Fingerprinting Network Flows using Neural

Networks”. In: Annual Computer Security Applications Conference. 2021, pp. 1011–

1024 (cit. on pp. 2, 3, 27–29, 33, 56, 62).

[68] Y. Shi and K. Matsuura. “Fingerprinting attack on the tor anonymity system”.

In: International Conference on Information and Communications Security. Springer.

2009, pp. 425–438 (cit. on p. 14).

[69] O. Starov et al. “Measuring and mitigating AS-level adversaries against Tor”. In:

arXiv preprint arXiv:1505.05173 (2016) (cit. on pp. 2, 19–21).

[70] Y. Sun et al. “{RAPTOR}: Routing attacks on privacy in tor”. In: 24th USENIX
Security Symposium (USENIX Security 15). 2015, pp. 271–286 (cit. on pp. 2, 3, 18–

21, 27).

[71] J. Teixeira. “Strengthening of Tor Against Traffic Correlation with K-Anonymity

Input Circuits”. MA thesis. FCT/UNL, 2021 (cit. on pp. 2–4, 19, 23, 24, 29).

[72] J. Teixeira and H. Domingos. “TIR - Strenthening Tor with Stunneled K-Anonymized

Input Circuits – TIR Prototype and Technical Report”. In: DI/FCT/UNL – NOV
LINCS Research Center (2021) (cit. on pp. 35, 39, 50).

[73] TensorFlow. TensorFlow. https://www.tensorflow.org/. (Visited on 2022-02-17)

(cit. on p. 42).

[74] Tor project. www.torproject.org (cit. on pp. 1, 8).

[75] C. Wacek et al. “An Empirical Evaluation of Relay Selection in Tor.” In: NDss. 2013

(cit. on pp. 19, 20).

[76] X. Wang et al. “A potential HTTP-based application-level attack against Tor”. In:

Future Generation Computer Systems 27.1 (2011), pp. 67–77 (cit. on pp. 13, 15, 16).

[77] X. Wang and D. S. Reeves. “Robust correlation of encrypted attack traffic through

stepping stones by manipulation of interpacket delays”. In: Proceedings of the 10th
ACM conference on Computer and communications security. 2003, pp. 20–29 (cit. on

p. 25).

[78] X. Wang et al. “Sleepy watermark tracing: An active network-based intrusion re-

sponse framework”. In: IFIP International Information Security Conference. Springer.

2001, pp. 369–384 (cit. on pp. 2, 3, 17, 18).

[79] Z. Weinberg et al. “How to catch when proxies lie: Verifying the physical loca-

tions of network proxies with active geolocation”. In: Proceedings of the Internet
Measurement Conference 2018. 2018, pp. 203–217 (cit. on pp. 19, 21).

74

https://doi.org/10.1109/49.668972
https://www.tensorflow.org/
www.torproject.org

BIBLIOGRAPHY

[80] P. Winter and S. Lindskog. How China Is Blocking Tor. 2012. arXiv: 1204.0447

[cs.CR] (cit. on pp. 1, 2, 8, 11).

[81] P. Winter et al. “Identifying and characterizing Sybils in the Tor network”. In: 25th
USENIX Security Symposium (USENIX Security 16). 2016, pp. 1169–1185 (cit. on

p. 16).

[82] P. Winter et al. “Spoiled onions: Exposing malicious Tor exit relays”. In: Interna-
tional Symposium on Privacy Enhancing Technologies Symposium. Springer. 2014,

pp. 304–331 (cit. on pp. 19, 20).

[83] W. Wong. “Stunnel: SSLing Internet Services Easily”. In: SANS Institute, November
(2001) (cit. on p. 23).

[84] M. Wright et al. “Defending anonymous communications against passive logging

attacks”. In: 2003 Symposium on Security and Privacy, 2003. IEEE. 2003, pp. 28–41

(cit. on pp. 2, 3, 16).

[85] Y. Zhu et al. “Correlation-based traffic analysis attacks on anonymity networks”.

In: IEEE Transactions on Parallel and Distributed Systems 21.7 (2009), pp. 954–967

(cit. on pp. 2, 3, 14).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.10) [novathesis-manual].

75

https://arxiv.org/abs/1204.0447
https://arxiv.org/abs/1204.0447
https://github.com/joaomlourenco/novathesis

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Context and motivation
	1.2 Research opportunity
	1.3 Goals
	1.3.1 Contributions

	1.4 Report Organization

	2 Background
	2.1 Internet censorship
	2.1.1 Content control and filtering approaches
	2.1.2 The Censorship race

	2.2 Tor Network Background
	2.2.1 What preceded Tor
	2.2.2 The Tor network
	2.2.3 Establishment of Tor circuits
	2.2.4 Tor Hidden Services
	2.2.5 Tor Anonymity Guarantees
	2.2.6 Tor Bridges
	2.2.7 Attacks against Tor
	2.2.8 Tor pluggable transports

	3 Related Work
	3.1 Tor Attacks
	3.1.1 Specific correlation attacks
	3.1.2 Enhanced correlation attacks
	3.1.3 Network flow watermarking attacks
	3.1.4 Attacks leveraged from internet routing level interceptions

	3.2 Tor Countermeasures
	3.2.1 Circumvention of adversary-poisoning relay nodes
	3.2.2 Circumvention of Non-Trustable Autonomous Systems
	3.2.3 Circumvention of unsafe geographical regions and related Geo-IPs
	3.2.4 Tor strengthening using K-Anonymization Input Circuits

	3.3 Watermarking Detection Methods and Tools
	3.3.1 Blind watermarking with deep-learning techniques

	3.4 Summary and Critical analysis

	4 TorMarker: System model and architecture
	4.1 Architecture overview
	4.2 Threat model
	4.3 Components and their design
	4.3.1 Watermarking module
	4.3.2 Correlation module

	4.4 TorMarker's purpose and operation
	4.4.1 Watermarker operation

	4.5 Summary

	5 Prototype implementation and environment setup
	5.1 TIR environment
	5.1.1 TIR nodes
	5.1.2 Stunnel

	5.2 Watermarking module
	5.2.1 Watermark crafting

	5.3 Correlation module
	5.3.1 Training
	5.3.2 Parameter optimization

	5.4 Summary

	6 Experimental evaluation
	6.1 Evaluation methodology
	6.1.1 Environment and scenario specification
	6.1.2 Methodology and metrics

	6.2 Tor vanilla scenario evaluation
	6.3 TIR scenario evaluation
	6.4 TIR partitioned flows evaluation
	6.5 Performance evaluation
	6.6 Main findings
	6.7 State-of-the-art tools comparison
	6.8 Summary

	7 Conclusions
	7.1 Main contributions
	7.2 Open issues
	7.3 Future implementations

	Bibliography
	Back Matter
	Back Cover

