40 research outputs found

    Additive Spanners: A Simple Construction

    Full text link
    We consider additive spanners of unweighted undirected graphs. Let GG be a graph and HH a subgraph of GG. The most na\"ive way to construct an additive kk-spanner of GG is the following: As long as HH is not an additive kk-spanner repeat: Find a pair (u,v)H(u,v) \in H that violates the spanner-condition and a shortest path from uu to vv in GG. Add the edges of this path to HH. We show that, with a very simple initial graph HH, this na\"ive method gives additive 66- and 22-spanners of sizes matching the best known upper bounds. For additive 22-spanners we start with H=H=\emptyset and end with O(n3/2)O(n^{3/2}) edges in the spanner. For additive 66-spanners we start with HH containing n1/3\lfloor n^{1/3} \rfloor arbitrary edges incident to each node and end with a spanner of size O(n4/3)O(n^{4/3}).Comment: To appear at proceedings of the 14th Scandinavian Symposium and Workshop on Algorithm Theory (SWAT 2014

    Improved Purely Additive Fault-Tolerant Spanners

    Full text link
    Let GG be an unweighted nn-node undirected graph. A \emph{β\beta-additive spanner} of GG is a spanning subgraph HH of GG such that distances in HH are stretched at most by an additive term β\beta w.r.t. the corresponding distances in GG. A natural research goal related with spanners is that of designing \emph{sparse} spanners with \emph{low} stretch. In this paper, we focus on \emph{fault-tolerant} additive spanners, namely additive spanners which are able to preserve their additive stretch even when one edge fails. We are able to improve all known such spanners, in terms of either sparsity or stretch. In particular, we consider the sparsest known spanners with stretch 66, 2828, and 3838, and reduce the stretch to 44, 1010, and 1414, respectively (while keeping the same sparsity). Our results are based on two different constructions. On one hand, we show how to augment (by adding a \emph{small} number of edges) a fault-tolerant additive \emph{sourcewise spanner} (that approximately preserves distances only from a given set of source nodes) into one such spanner that preserves all pairwise distances. On the other hand, we show how to augment some known fault-tolerant additive spanners, based on clustering techniques. This way we decrease the additive stretch without any asymptotic increase in their size. We also obtain improved fault-tolerant additive spanners for the case of one vertex failure, and for the case of ff edge failures.Comment: 17 pages, 4 figures, ESA 201

    An FPT Algorithm for Minimum Additive Spanner Problem

    Get PDF
    For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which the distance between every pair of vertices is at most the original distance plus t. The Minimum Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges in a given graph, which is known to be NP-hard. Since we need to care about global properties of graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is hard to handle and hence only few results are known for it. In this paper, we study the Minimum Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate a parameterized version of the problem in which the number of removed edges is regarded as a parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with both a multiplicative approximation factor ? and an additive approximation parameter ?, which we call (?, ?)-spanners

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2F+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)logn(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(F2log2n)O(|F|^2 \log^2 n) time a (2F+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog2n)O(m \log^2 n), that reports in O(k2log2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure
    corecore