390 research outputs found

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication

    Physical 2D Morphware and Power Reduction Methods for Everyone

    Get PDF
    Dynamic and partial reconfiguration discovers more and more the focus in academic and industrial research. Modern systems in e.g. avionic and automotive applications exploit the parallelism of hardware in order to reduce power consumption and to increase performance. State of the art reconfigurable FPGA devices allows reconfiguring parts of their architecture while the other configured architecture stays undisturbed in operation. This dynamic and partial reconfiguration allows therefore adapting the architecture to the requirements of the application while run-time. The difference to the traditional term of software and its related sequential architecture is the possibility to change the paradigm of brining the data to the respective processing elements. Dynamic and partial reconfiguration enables to bring the processing elements to the data and is therefore a new paradigm. The shift from the traditional microprocessor approaches with sequential processing of data to parallel processing reconfigurable architectures forces to introduce new paradigms with the focus on computing in time and space

    MARTE based design flow for Partially Reconfigurable Systems-on-Chips

    Get PDF
    International audienceSystems-on-Chip (SoCs) are considered an integral solution for designing embedded systems, for targeting complex intensive parallel computation applications. As advances in SoC technology permit integration of increasing number of hardware resources on a single chip, the targeted application domains such as software-defined radio are become increasingly sophisticated. The fallout of this complexity is that the system design, particularly software design, does not evolve at the same pace as that of hardware leading to a significant productivity gap. Adaptivity and reconfigurability are also critical issues for SoCs which must be able to cope with end user environment and requirements

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Module Relocation in Heterogeneous Reconfigurable Systems-on-Chip using the Xilinx Isolation Design Flow

    Get PDF
    International audienceHeterogeneous Reconfigurable Systems-on-Chip (HRSoC) contain as their name suggests, heterogeneous processing elements in a single chip. Namely, several processors, hardware accelerators as well as communication networks between all these components. In order to leverage the programming complexity of this kind of platform, applications are described with software threads, running on processors, and hardware threads, running on FPGA partitions. Combining techniques such as dynamic and partial reconfiguration and partial readback with the knowledge of the bitstream structure offer the ability to target several partitions using a unique configuration file. Such a feature permits to save critical memory resources. In this article, we propose to tackle the issue of designing fully independent partitions, and especially to avoid the routing conflicts which can occur when using the standard Xilinx FPGA design flow. To achieve the relocation process successfully, we propose a new design flow dedicated to the module relocation, using the standard tools and based on the Isolation Design Flow (IDF), a special flow provided by Xilinx for secure FPGA applications

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Integrating Mode Automata Control Models in SoC Co-Design for Dynamically Reconfigurable FPGAs

    Get PDF
    International audienceThe number of integrated transistors that can be contained on a chip are increasing at an exponential rate, along with rise in targeted sophisticated applications. Thus the design of Systems-on-Chip (SoC) is becoming more and more complex. Hence there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper presents a novel approach for expressing system adaptivity and reconfigurability in Gaspard, a SoC co-design framework, with special focus on partially dynamically reconfigurable FPGAs. The framework is compliant with UML MARTE profile proposed by Object Management Group, for modeling and analysis of realtime embedded systems. The overall objective is to carry out system modeling at a high abstraction level expressed in UML; and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesi

    Models for Co-Design of Heterogeneous Dynamically Reconfigurable SoCs

    Get PDF
    International audienceThe design of Systems-on-Chip is becoming an increasing difficult challenge due to the continuous exponential evolution of the targeted complex architectures and applications. Thus, seamless methodologies and tools are required to resolve the SoC design issues. This chapter presents a high level component based approach for expressing system reconfigurability in SoC co-design. A generic model of reactive control is presented for Gaspard2, a SoC co-design framework. Control integration in different levels of the framework is explored along with a comparison of their advantages and disadvantages. Afterwards, control integration at another high abstraction level is investigated which proves to be more beneficial then the other alternatives. This integration allows to integrate reconfigurability features in modern SoCs. Finally a case study is presented for validation purposes. The presented works are based on Model-Driven Engineering (MDE) and UML MARTE profile for modeling and analysis of real-time embedded systems

    Dynamic partial reconfiguration for pipelined digital systems— A Case study using a color space conversion engine

    Get PDF
    In digital hardware design, reconfigurable devices such as Field Programmable Gate Arrays (FPGAs) allow for a unique feature called partial reconfiguration PR). This refers to the reprogramming of a subset of the reconfigurable logic during active operation. PR allows multiple hardware blocks to be consolidated into a single partition, which can be reprogrammed at run-time as desired. This may reduce the logic circuit (and silicon area) requirements and greatly extend functionality. Furthermore, dynamic partial reconfiguration (DPR) refers to PR that does not halt the system during reprogramming. This allows for configuration to overlap with normal processing, potentially achieving better system performance than a static(halting) PR implementation. This work has investigated the advantages and trade-offs of DPR as applied to an existing color space conversion(CSC) engine provided by Hewlett-Packard (HP). Two versions were created: a single-pipeline engine, which can only overlap tasks in specific sequences; and a dual-pipeline engine, which can overlap any consecutive tasks. These were implemented in a Virtex-6 FPGA. Data communication occurs over the PCI Express (PCIe) interface. Test results show improvements in execution speed and resource utilization, though some are minor due to intrinsic characteristics of the CSC engine pipeline. The dual-pipeline version outperformed the single-pipeline in most test cases. Therefore, future work will focus on multiple-pipeline architectures
    • …
    corecore