610 research outputs found

    Synthesis Methods of Multiple-valued Structures of Language Systems

    Get PDF
    The basic construction concepts of many-valued intellectual systems, which are adequate to primal problems of person activity and using hybrid tools with many-valued of coding are considered. The many-valued intellectual systems being two-place, but simulating neuron processes of space toting which are different on a level of actions, inertial and threshold of properties of neurons diaphragms, and also modification of frequency of following of the transmitted messages are created. All enumerated properties and functions in point of fact are essential not only are discrete on time, but also many-valued

    Ternary and quaternary logic to binary bit conversion CMOS integrated circuit design using multiple input floating gate MOSFETs

    Get PDF
    Multiple-input floating gate MOSFETs and floating gate potential diagrams have been used for conversion of ternary-valued input and quaternary-valued input into corresponding binary-valued output in CMOS integrated circuit design environment. The method is demonstrated through the design of a circuit for conversion of ternary inputs 00 to -1-1 (decimal 0 to -4) and 00 to 11 (decimal 0 to +4) into the corresponding binary bits and for conversion of quaternary inputs (decimal 0 to 3) into the corresponding binary bits (binary 00 to 11) in a standard 1.5 mm digital CMOS technology. The physical design of the circuits is simulated and tested with SPICE using MOSIS BSIM3 model parameters. The conversion method is simple and compatible with the present CMOS process. The circuits could be embedded in digital CMOS VLSI design architectures. The conversion circuit for ternary inputs into corresponding binary outputs has maximum propagation delay of 8 ns with 0.1 pF simulated capacitive load. The physical layout design occupies an area of 432´908 mm2. The conversion circuit for quaternary inputs to corresponding binary outputs has maximum propagation delay of 6 ns with 0.1 pF simulated capacitive load. The physical layout design occupies an area of 130´175 mm2. The conversion circuit achieved significant improvement in the number of devices. A reduction of more than 75% in transistor count was obtained over the previous designs. Measurements of the fabricated devices for the conversion of quaternary input into binary output agree with simulated values

    Continuous-valued probabilistic neural computation in VLSI

    Get PDF

    Analogue VLSI study of temporally asymmetric Hebbian learning

    Get PDF
    • …
    corecore