275 research outputs found

    Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions.

    Get PDF
    Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject's self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot-ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject's walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject's walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject's walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations

    Lower limb stiffness estimation during running: the effect of using kinematic constraints in muscle force optimization algorithms

    Get PDF
    The focus of this paper is on the effect of muscle force optimization algorithms on the human lower limb stiffness estimation. By using a forward dynamic neuromusculoskeletal model coupled with a muscle short-range stiffness model we computed the human joint stiffness of the lower limb during running. The joint stiffness values are calculated using two different muscle force optimization procedures, namely: Toque-based and Torque/Kinematic-based algorithm. A comparison between the processed EMG signal and the corresponding estimated muscle forces with the two optimization algorithms is provided. We found that the two stiffness estimates are strongly influenced by the adopted algorithm. We observed different magnitude and timing of both the estimated muscle forces and joint stiffness time profile with respect to each gait phase, as function of the optimization algorithm used

    Predictive simulations of neuromuscular coordination and joint-contact loading in human gait

    Get PDF
    We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot–ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function

    COMPARATIVE STUDY ON POSTURE AND ITS INFLUENCES ON HORIZONTAL GROUND REACTION FORCES GENERATED BY MUSCLES: IMPLICATIONS FOR CROUCH GAIT

    Get PDF
    Crouch gait decreases walking efficiency due to the increased knee and hip flexion during the stance phase of gait. Crouch gait is generally considered to be disadvantageous for patients with cerebral palsy; however, a crouched posture may afford biomechanical advantages that lead some patients to adopt a crouch gait. To investigate one possible advantage of crouch gait, a musculoskeletal model created in OpenSim was placed in 15 different postures from upright to severe crouch during initial, middle, and final stance of the gait cycle. A series of optimizations were performed for each posture to maximize ground reaction forces for the 8 compass directions in the transverse plane by modifying muscle forces acting on the model. We compared the areas of the force profiles across all postures. An overall larger force profile area is allowed by postures from mild crouch (for initial stance) to crouch (for final stance). The overall ability to generate larger ground reaction force profiles represents a mechanical advantage of a crouched posture. This increase in muscle capacity while in a crouched posture may allow a patient to generate new movements to compensate for impairments associated with cerebral palsy, such as motor control deficits

    The Influence of Neuromusculoskeletal Model Calibration Method on Predicted Knee Contact Forces during Walking

    Get PDF
    This study explored the influence of three model calibration methods on predicted knee contact and leg muscle forces during walking. Static optimization was used to calculate muscle activations for all three methods. Approach A used muscle-tendon model parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly from literature. Approach B used a simple algorithm to calibrate muscle-tendon model parameter values such that each muscle operated within the ascending region of its normalized force-length curve. Approach C used a novel two-level optimization procedure to calibrate muscle-tendon, moment arm, and neural control model parameter values while simultaneously predicting muscle activations

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments

    Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study.

    Get PDF
    Accurate models of proprioceptive neural patterns could one day play an important role in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper looks at combining efficient implementations of biomechanical and proprioceptor models in order to generate signals that mimic human muscular proprioceptive patterns for future experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper limb with 7 degrees of freedom and 17 muscles is presented and generates real time estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous neuro-musculoskeletal models, muscle activation and excitation levels are unknowns in this application and an inverse dynamics tool (static optimisation) is integrated to estimate these variables. A proprioceptive prosthesis will need to be portable and this is incompatible with the computationally demanding nature of standard biomechanical and proprioceptor modelling. This paper uses and proposes a number of approximations and optimisations to make real time operation on portable hardware feasible. Finally technical obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well as issues and limitations with existing models, are identified and discussed

    Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.

    Get PDF
    Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion

    Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping

    Get PDF
    BACKGROUND: The purpose of this study was to determine the effects of non-extensor muscles of the leg (i.e., muscles whose primary function is not leg extension) on the kinematics and kinetics of human maximal-effort countermovement jumping. Although it is difficult to address this type of question through experimental procedures, the methodology of computer simulation can be a powerful tool. METHODS: A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Two sets of muscle models were attached to this skeletal model: all (most of) major muscles in the leg ("All Muscles" model) and major extensor muscles in the leg (i.e., muscles whose primary function is leg extension; "Extensors Only" model). Neural activation input signal was represented by a series of step functions with a step duration of 0.05 s. Simulations were started from an identical upright standing posture. The optimal pattern of the activation input signal was searched through extensive random-search numerical optimization with a goal of maximizing the height reached by the mass centre of the body after jumping up. RESULTS: The simulated kinematics was almost two-dimensional, suggesting the validity of two-dimensional analyses when evaluating net mechanical outputs around the joints using inverse dynamics. A greater jumping height was obtained for the "All Muscles" model (0.386 m) than for the "Extensors Only" model (0.301 m). For the "All Muscles" model, flexor muscles developed force in the beginning of the countermovement. For the "All Muscles" model, the sum of the work outputs from non-extensor muscles was 47.0 J, which was 13% of the total amount (359.9 J). The quantitative distribution of the work outputs from individual muscles was markedly different between these two models. CONCLUSION: It was suggested that the contribution of non-extensor muscles in maximal-effort countermovement jumping is substantial. The use of a computer simulation model that includes non-extensor muscles seems to be more desirable for the assessment of muscular outputs during jumping

    Modelling neuromusculoskeletal response to functional electrical stimulation

    Get PDF
    A model for functional electrical stimulation with hysteretic muscle recruitment is used to reproduce experimental tibialis anterior stimulation to control ankle dorsiflexion. The subject-specific parameters of the muscle recruitment model where identified from experimental data by solving a nonlinear least-squares problemPeer ReviewedObjectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (published version
    corecore